

PHYTASE, XYLANASE, AND PROTEASE USE IN A WHEAT DDGS AND RAPESEED DIET FOR FINISHER PIGS

A. Torres-Pitarch, U. McCormack, V. Beattie, E. Magowan, G.E. Gardiner, P.G. Lawlor

67th Annual Meeting of the European Federation of Animal Science Belfast UK, 29th Aug – 2nd Sept 2016

Introduction

- **Phytase: ↑** digestibility of phosphorous (P)
- **Carbohydrases: 1** digestibility of non-starch polysaccharides (NSP)
- **Protease: 1** digestibility of protein

WHAT IS KNOWN IN PIGS:

- Well known effect of phytase on P digestibility
- Inconsistent results with carbohydrases
- Protease not included regularly in finisher diets

Interactions between them?

Introduction

Hypothesis

 Supplementation of enzymes into by-product (RSM and wheat-DDGS) based diets can improve feed efficiency in finisher pigs

✓Interactions between phytase, carbohydrase and protease can modify their individual supplementation effect

Objective:

✓ Establish the combination of feed enzymes that optimise feed efficiency in finisher pigs

Material and Methods

- 162 pigs, MaxGrow[™] x (LWxLandrace; Hermitage Genetics)
- 81 same sex pen pairs into 9 treatments (n=9 pens/treatment)

d14

d25

Kg

d42

Ka

d56

Kg

d63

- Age: 42 days pw (38.8 ± 2.90 kg)
- Duration: 76 days
- Recordings:
 - Body weight and feed intake 2-3 weeks
 - ADG (g/day), ADFI (g/day), FCR (g/g)
 - Slaughter:
 - Kill out %, carcass weight, fat depth, muscle depth and lean %,

d76

Material and Methods

• **DIETARY TREATMENTS:**

- 1) Positive control (PC): exceeds NRC (2012) requirements
- 2) Negative control (NC): basal diet with 5% reduction in energy and amino acid levels
- 3) NC + Heat stable phytase
- **4)** NC + Xylanase and β-glucanase complex (Xβ)
- 5) NC + protease
- 6) NC + phytase + protease
- 7) NC + phytase + Xβ
- 8) NC + X β + protease
- 9) NC + phytase + Xβ + protease

Phytase (Phyzyme XP, DuPont), Xβ (Rovabio Spiky, Adisseo), Protease (Ronozyme ProAct, DSM)

Material and Methods

	T1	T2	Т3	Т4	T5	Т6	T7	T 8	Т9
Phytase, g/tone	-	-	100	-	-	100	100	-	100
Carbohydrase, g/tone	-	-	-	100	-	-	100	100	100
Protease, g/tone	-	-	-	-	200	200	-	200	200
Net Energy, MJ/kg	9.9	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
Av. Lysine , g/kg	0.83	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
P:Ca, g/g	0.85	0.85	0.83	0.85	0.85	0.83	0.83	0.85	0.83
Av. Phosphorus , g/kg Phytase sparing effect	0.30	0.30	0.22 +0.15	0.30	0.30	0.22 +0.15	0.22 +0.15	0.30	0.22 +0.15

*Calculated composition

✓ Diets based on Rapeseed meal (9.6-10%), wheat (30-39%), barley (35-38%) and wheat DDGS (20%)

- ✓ Balanced amino acid profile
- ✓ Enzymes premixed with 10 kg of wheat

1st September 2016

Effect of diet density on growth performance

1st September 2016

8

Sparing effect of phytase on growth performance

1st September 2016

• Effect of Xβ on growth performance

+ Χβ

CONTROL

Effect of protease on growth performance

Interaction between protease effect and sex

Control + Protease

1st September 2016

Results – Carcass parameters

Conclusions

- 5% in energy and AA on a commercial Irish diet might not be sufficient to see the potential of feed enzymes
- Phytase: the sparing effect for P and Ca was effective
- Xylanase and β-glucanase complex: did not improve FCR
- Protease: has potential to improve feed efficiency in males
- Excellent performance without soya
 - Sister trial presented at Session 03 (M.M.E. Ball et al.)

Acknowledgements

- ECO-FCE project (7th FP-EU) & partners
- Teagasc Walsh fellowship programme
- Co-workers from the Teagasc pig department & IRTA & WIT

Thank you

EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

ECOFCE

BASIC DATA

Funding: EU-FP7 (€ 6 million)

Start date: 1 February 2013

Duration: 48 months (2013 to 2017)