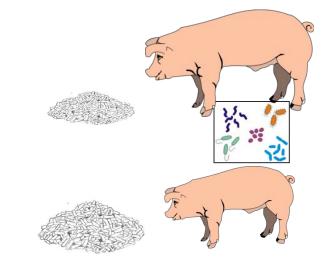
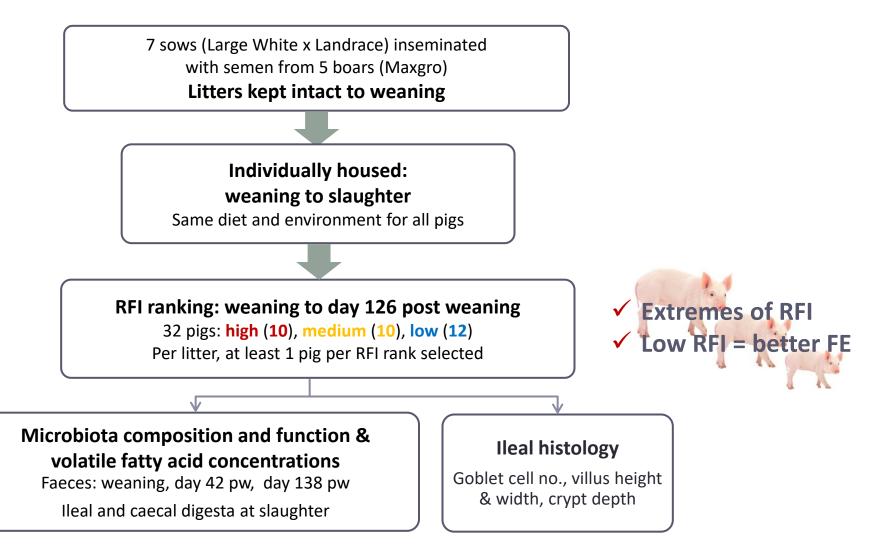


Porcine feed efficiency is associated with intestinal microbiota composition

U. M. McCormack, Tania Curiao *, S.G. Buzoianu, M.L. Prieto, T. Ryan,
P. Varley, F. Crispie, E. Magowan, B.U. Metzler-Zebeli, D. Berry,
O. O'Sullivan, P.D. Cotter, G.E. Gardiner, and P.G. Lawlor

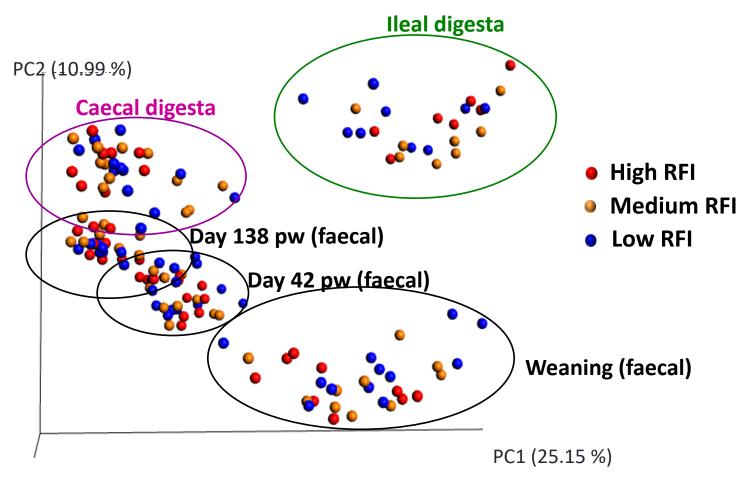

1st September 2016 67th EAAP, Belfast


Intestinal microbiota and feed efficiency (FE)

- Ecosystem of trillions of microbes in the intestine
- Play an essential role in the host (health, metabolism, growth)
- Energy harvest from diet, so it is likely to impact FE in pigs
- In pig production, feed accounts for ≈ 70% of cost
- Thus manipulation of intestinal microbiota could enhance profitability (FMT-study, abst. no. 24595)

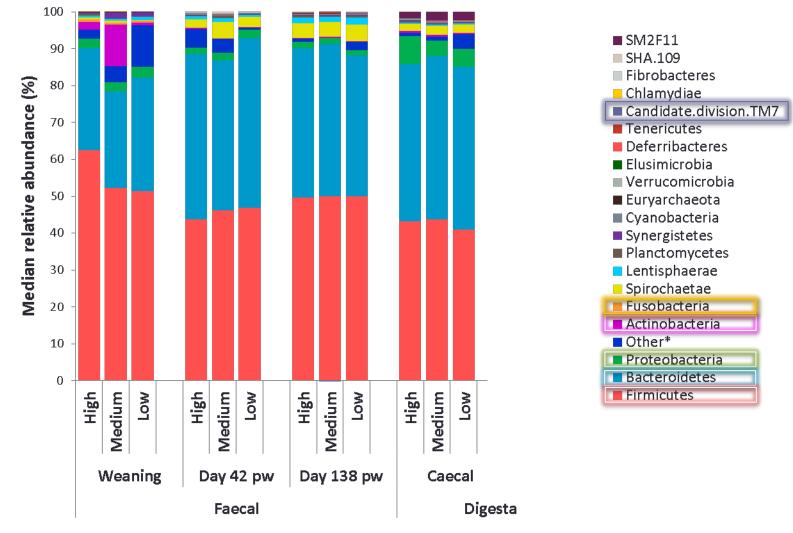
Characterise intestinal microbiota of pigs of high, medium and low residual feed intake (RFI), with genetic, nutritional and management variations minimized

Selection of pigs and sampling



RESULTS

β-diversity varied over time and sample type

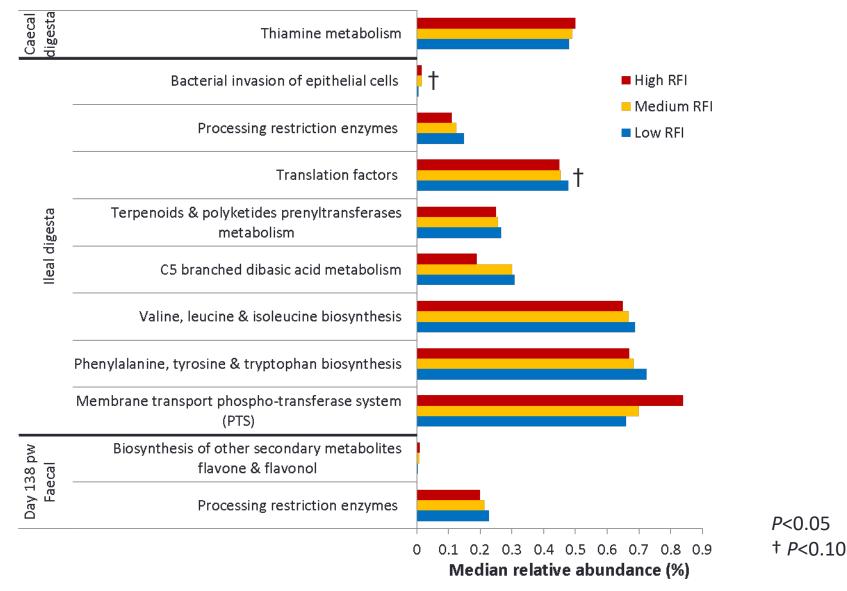

Principle coordinate analysis (PCoA) plot based on OTUs by RFI rank & sample type

PC3 (6.1 %)

α-diversity: Chao1, Simpson, Shannon indices by RFI rank, P>0.05

Compositional differences: phylum

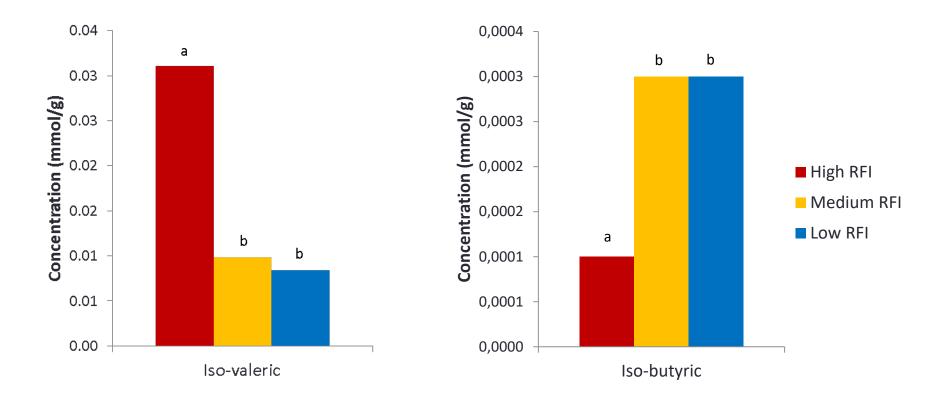
*Other = No blast hits/uncultured

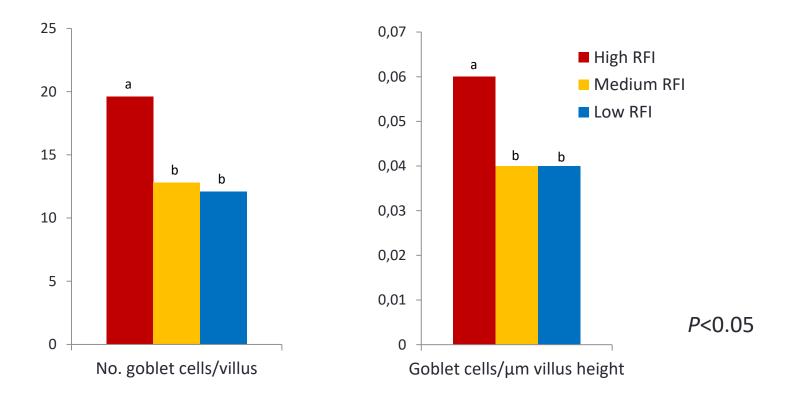

Differences in rel. abundance for two phyla (P<0.05, high and low RFI)

Compositional differences: family & genus

	Bacteria (F_Family, C		Median relative abundance (%) high vs. low RFI	Low RFI	Sample
Actinobacteria	Actinomucatalas	F Nocardiaceae	37 vs. 12	\downarrow	Ileal
Actinobacteria	Actinomycetales	G_Rhodococcus	37 vs. 12	\checkmark	Ileal
		F_Clostridiaceae1	8 vs. 4		F d138
		G_Clostridium sensu.stricto1	8 VC		F d138
		G uncultured Clostridiales			F d138
	Clostridiales	F_Christensenellac			F d138
		G_uncut		1	F d138
Firmicutes		- Lors IU	-0	\uparrow	F d138
		arkers	0.002 vs. 0.01	\uparrow	lleal
	· - m	ann	0.06 vs. 0.03	\downarrow	F weaning
Clostridiales Firmicutes			0.003 vs. 0	\downarrow	Caecal
		г_Streptococcaceae	0.01 vs. 0	\checkmark	F d42
		G_Streptococcus	0.007 vs. 0	\checkmark	F d42
Bacteroidetes	Bacteroidales	F_Bacteroidaceae	0.04 vs. 0.18	\uparrow	F d138
	Bacterolaales	G_Bacteroides	0.04 vs. 0.18	\uparrow	F d138
Proteobacteria	Pasteurellales	G Actinobacillus	0.002 vs. 0.009	\uparrow	Caecal
Archaea	Methanobacteriales	G_Methanosphaera	0.001 vs. 0.000	\downarrow	Ileal

Metagenomic functional prediction


PICRUSt faecal & intestinal microbiota of pigs ranked on RFI


Volatile fatty acid concentrations

Faeces (weaning)


Ileal digesta

Ileal histology

- " Oblater dents any to budge pt hoigs 9.05
 - Mucin production: host defense (Liu et al. 2006)
 - "Intestinal inflammation (Kim *et al.* 2010)
 - ' nutrient absorption?

Conclusions

Intestinal microbiota

- No clustering by RFI, but samples clustered by age & intestinal site
- RFI-associated differences: **potential biomarkers** for improved FE
 - Low RFI pigs:
 - *↑ Christensenellaceae* family (lean phenotype)
 - *↑ Oscillibacter* (valerate producer, health benefits)
 - ↑ *Cellulosilyticum* (cellulose degrading ability)
- Predicted microbial functionality (ileum):
 - \uparrow bacterial pathways related to **metabolism** (amino acids & core)
 - \downarrow bacterial sugar-uptake transporters (higher CHO availability for pig utilization)

Conclusions

Volatile fatty acids

• \downarrow Iso-valeric (faeces) and \uparrow iso-butyric (ileum) acids (end products of protein microbial fermentation):

Improved protein utilization?

• \downarrow Ileal goblet cells linked with improved FE

- \downarrow mucin production: \uparrow permeability and nutrient absorption?
- Improved intestinal health- no inflammation?

First comprehensive set of potential microbial biomarkers for FE in pigs. Microbiota is a likely driver of FE in pigs.

Acknowledgements

- ECO-FCE project (7th FP-EU) & partners
- Teagasc Walsh fellowship programme
- Co-workers from the pig department and food centre Teagasc (Moorepark) & WIT

Thank you

EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

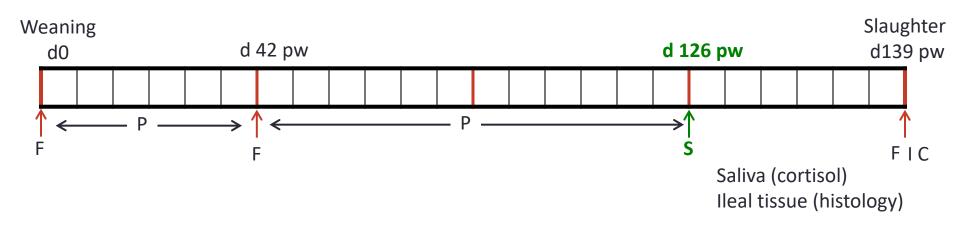
A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

ECOFCE

BASIC DATA

Funding: EU-FP7 (€ 6 million)

Start date: 1 February 2013


Duration: 48 months (2013 to 2017)

Screening process

- 81 pigs, individually housed from weaning to slaughter
 - 2 weeks before slaughter: 32 pigs from 7 litters selected as extremes in RFI
 - High RFI (10): poor feed efficiency
 - Medium RFI (10): average feed efficiency
 - Low RFI (12): good feed efficiency

F – faecal; I – ileal digesta; C – caecal digesta; P – performance; S-selection

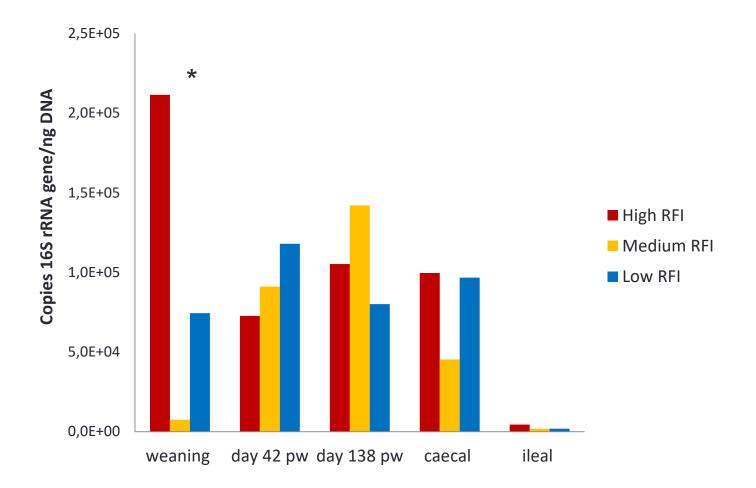
Growth performance (weaning to selection)

	High	Medium	Low	S.E.	P-value
RFI ¹ (g)	76.0 ^a	6.0 ^b	-51.0 ^c	15.40	<0.001
RIG ² (g)	-1693ª	-179 ^b	986°	42.9	< 0.001
RG ³ (g)	-12.0	-2.0	4.0	8.2	0.39
Wean weight (kg)	9.17	8.92	7.89	0.297	0.51
Selection weight (kg)	132.9	129.4	123.1	1.81	0.19
ADFI (g/day)	1850 ^a	1732 ^{a,b}	1631 ^b	51.2	<0.01
ADG (g/day)	910	877	855	28.4	0.38
FCE (g/g)	1.91 ^a	1.86 ^{a,b}	1.79 ^b	0.025	<0.01

^{a,b,c} Within each row, values that do not share a common superscript are different (P≤0.05)

¹Residual feed intake (RFI)= the difference between observed feed intake and that predicted by growth
²Residual intake and gain (RIG)= (RG/SD RG) - (RFI/SD RFI)
³Residual gain (RG)= the difference between observed gain and that predicted by growth

Salivary cortisol



Cortisol (pooled results from day 135 & 137 pw): stressed animals divert energy away from lean meat deposition (Richardson *et al.* 2004)

	High	Medium	Low	S.E.	P-value
Salivary cortisol (ng/ml)	4.8	4.1	4.5	1.38	0.74

Total bacterial DNA

* P<0.05

Correlations for the significantly different genus & VFA

Genus	Acetic	Propionic I	Butyric	Isobutyric	Valeric	Isovaleric
Actinobacteria.Nocardiaceae.Rhodococcus				-0.164	-0.186	-0.180
Firmicutes.Clostridiaceae.Clostridium.sensu.stricto.1	-0.297	-0.291	-0.301	-0.426	-0.381	-0.364
Firmicutes.Christensenellaceae_uncultured	0.274	0.307	0.309	0.300	0.297	0.217
Firmicutes.Ruminococcaceae.Oscillibacter		-0.154	-0.164		0.139	
Firmicutes.Lachnospiraceae.Cellulosilyticum	-0.256	-0.305	-0.276	-0.356	-0.286	-0.286
Firmicutes.Streptococcaceae.Streptococcus		-0.110		-0.182	-0.155	-0.153
Bacteroidetes.Bacteroidaceae.Bacteroides	0.243	0.261	0.248	0.219	0.201	0.136
Proteobacteria. Pasteurellaceae. Actinobacillus					-0.166	-0.141

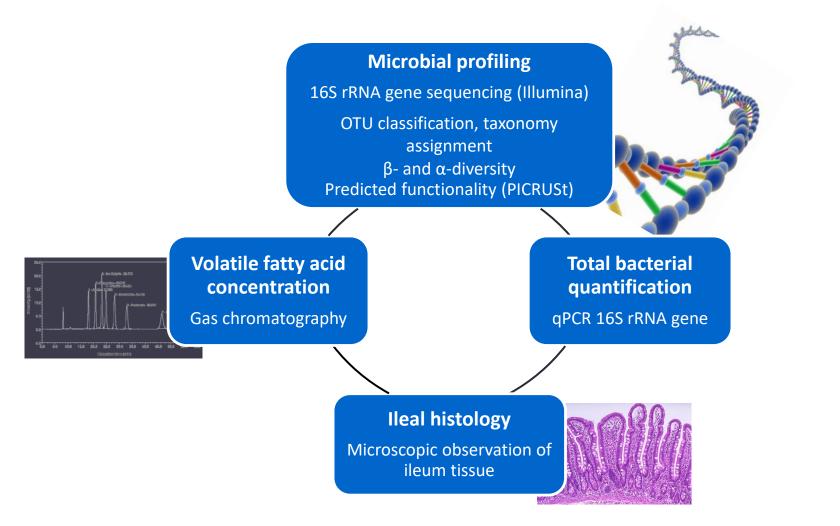
All correlations P<0.05

Phylum & VFA correlations

Phyla	Acetic	Butyric	Isobutyric	Propionic	Valeric	Isovaleric
Acidobacteria	-0.182	-0.161	0.060	-0.195	-0.143	-0.070
Actinobacteria	-0.047	-0.040	0.075	-0.019	-0.179	-0.135
Bacteroidetes	0.063	0.010	0.013	-0.007	0.213	0.173
CandidatedivisionOD1	-0.118	-0.059	0.345	-0.058	-0.080	-0.088
CandidatedivisionTM7	-0.076	-0.049	0.355	-0.096	0.049	0.017
Chlamydiae	0.081	0.137	0.009	0.088	0.169	0.218
Chlorobi	-0.086	-0.112	0.145	-0.095	-0.072	-0.105
Chloroflexi	-0.105	-0.063	0.336	-0.087	-0.029	-0.057
Cyanobacteria	-0.090	-0.116	0.355	-0.134	0.039	0.030
Deferribacteres	0.214	0.133	0.003	0.182	0.278	0.173
DeinococcusThermus	-0.110	-0.089	0.011	-0.168	-0.163	-0.157
Elusimicrobia	0.027	0.044	0.293	0.042	0.097	0.037
Fibrobacteres	-0.057	-0.067	0.354	-0.055	0.037	-0.043
Firmicutes	0.150	0.193	0.078	0.174	0.083	0.105
Fusobacteria	0.038	0.062	0.355	0.088	-0.053	-0.021
Lentisphaerae	0.095	0.171	0.006	0.122	0.172	0.100
Nitrospirae	-0.061	-0.078	0.305	-0.038	-0.002	-0.049
Planctomycetes	0.135	0.148	0.009	0.115	0.245	0.099
Proteobacteria	-0.064	-0.067	0.064	-0.078	-0.106	-0.080
SHA109	-0.025	-0.015	0.355	0.030	0.089	0.031
SM2F11	-0.094	-0.018	0.355	-0.078	-0.071	-0.057
Spirochaetae	0.014	-0.034	0.350	-0.031	0.156	0.045
Synergistetes	0.209	0.284		0.276	0.259	0.180
Tenericutes	-0.024	-0.029	0.355	-0.044	0.121	0.008
Verrucomicrobia	0.075	0.088	0.060	0.098	0.168	0.076
Eukaryota_Excavata	-0.028	-0.104	0.224	-0.036	0.013	-0.103
Archaea_Euryarchaeota		0.213				

Chapter 2: Carcass quality

	High	Medium	Low	S.E	P-value
Slaughter weight (kg)	150.3	147.2	141.0	2.50	0.51
Carcass cold weight (kg)	113.4	113.1	108.1	3.59	0.48
Kill out (%)	79.2	78.9	77.9	0.53	0.19
Muscle (mm)	61.7	61.0	63.2	1.78	0.66
Fat (mm)	17.2	17.9	16.4	0.79	0.56
Lean meat (%)	54.9	54.1	55.5	0.69	0.49



Chapter 2: Organ weights

	High	Medium	Low	S.E	P-value
OFFAL (g)	4022	4195	4194	105.2	0.45
Heart (g)	476.5 ^a	522.2 ^b	482.3 ^{a,b}	15.54	0.08
Kidneys (g)	426.9	514.5	482.9	34.40	0.26
Liver (g)	2001.7	2054.4	2105.6	66.14	0.55
Lungs (g)	1152.6	1236.2	1130.7	56.01	0.38
GIT (g)	2049	2246	2257	123.3	0.44
Stomach (g)	595.3	615.0	661.1	26.85	0.22
Small intestine (g)	1453.5	1631.1	1595.7	112.73	0.54

Methodology

