

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

Performance of male layer hybrids fed different dietary protein sources as fattening cockerels

S. Ammer, N. Quander, I. D. M. Gangnat, V. Maurer and F. Leiber

Background

- > High intensification in the poultry production
 - \rightarrow specialized hybrids with high efficiency in onesided purpose
 - \rightarrow laying performance vs. meat production
 - \rightarrow no efficient use for male chicken of layer hybrids
- > 2.5 billion one-day-old male layer hybrids culled worldwide per year
 - → increasingly critizised from society, politics, etc. as an unethical practice (Bruijnis et al., 2015)
 - \rightarrow e.g. prohibition of culling until end of 2017 in parts of Germany

 \rightarrow Need for alternatives avoiding culling

www.fibl.ora

Background

> Mainly discussed alternatives:

ww.fibl.ora

- \rightarrow sex determination *in*-ovo
- \rightarrow breed of dual-purpose chicken
- → fattening of male layer hybrids discussed as one problemsolving opportunity
- Inefficient and uneconomic fattening performance of male layer hybrids (e.g. Kaufmann and Andersson, 2015)

- Fattening chicken fed with valuable protein sources as soybean expensive import and negative ecological effects
 - \rightarrow use of more extensive feed solution for male layer hybrids?

Objectives

- Comparison of fattening performance and meat quality between two layer hybrids and a common organic fattening strain,
- Investigation of a more extensive protein source with lower dietary protein content.

Estimation of:

www.fibl.ora

- > Effects of genotype,
- > Effects of dietary crude protein content,
- > Interaction of genotype and dietary treatment.

Materials and methods

- > Dec 2014- Mar 2015;
- > 270 one day old chicken

Animals

- > Mixed-sex fattening chicken
 - 90 Hubbard JA-757
 (HUB, organic);

> Male layer hybrids

- > 90 Lohmann Brown (LB);
- > 90 Lohmann Selected Leghorn (LSL);
- \rightarrow Each genotype: 3 treatment-groups with 30 chicken/treatment

Dietary treatments

Commercial organic fattening diet 25.5 % soybean cake

Control feed (CF)

+ Alfalfa meal ad lib.

(Alf-ext)

12 % of soybean cake replaced by alfalfa meal (**Alf-int**)

Nutritional composition

ltem	CF	Alfalfa-meal	Alf-int		
Dry matter (%)	89.65	91.2	89.1		
Crude protein (g/kg)	200	165	173		
Lysin (g/kg)	9.3	6.1	7.8		
Methionin (g/kg)	3.9	2.8	3.3		
Energy (MJ/kg)	12.2	6.06	11.4		

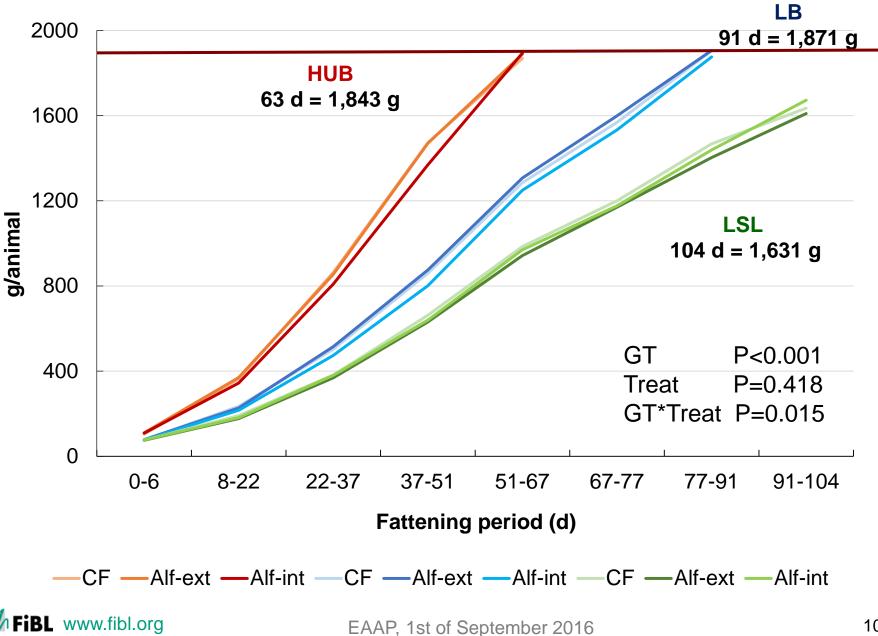
Data recording and analysis

Group based:

> Feed consumption

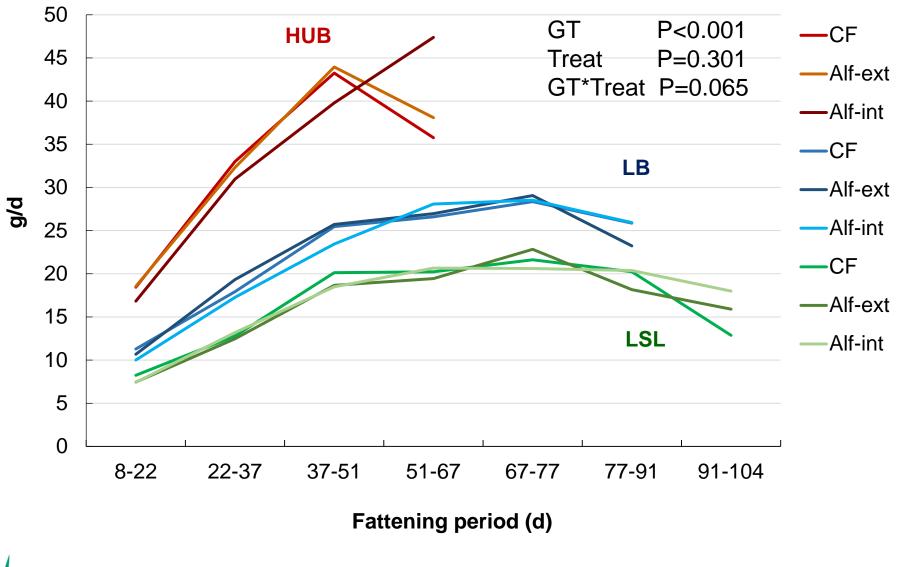
Animal based:

- > Weight gain
- > Liveweight
- Physical and chemical meat quality parameters
- Fattening periods per GT were defined based on the liveweight of HUB after 63 d


 Univariate variance analysis: fixed effects of genotype and dietary treatments, interactions

(SPSS, Version 20.0)

www.fibl.ora


Results

Growth rate – by genotype and dietary treatment

Daily weight gain

EAAP, 1st of September 2016

Slaughter performance and meat cuts

Item	HUB	LB	LSL	SEM	P-Value			
					GT	Feeding	GT*Feed	
Carcass weight (g)	1,191 ^a	1,148 ^b	957°	14.1	<0.001	0.609	0.629	
Slaughter yield (%)	64.6 ^a	61.3 ^b	58.7°	0.00	<0.001	<0.001	0.358	
Breast cut								
Weight, (g)	346 ^a	281 ^b	282 ^b	4.66	<0.001	0.237	0.668	
Proportion, (%)	29.1 ^a	24.5 ^b	29.4 ^a	0.00	<0.001	0.247	0.248	
Leg cut								
Weight, (g)	361 ^a	373 ^a	303 ^b	6.05	<0.001	0.677	0.735	
Proportion, (%)	30 .3ª	32.6 ^b	31.7 ^b	0.00	<0.001	0.974	0.815	

Slaughter performance and meat cuts

Item	HUB	LB	LSL	SEM	P-Value			
					GT	Feeding	GT*Feed	
Carcass weight (g)	1,191 ^a	1,148 ^b	957°	14.1	<0.001	0.609	0.629	
Slaughter yield (%)	64.6 ^a	61.3 ^b	58.7°	0.00	<0.001	<0.001	0.358	
Breast cut								
Weight, g	346 ^a	281 ^b	282 ^b	4.66	<0.001	0.237	0.668	
Proportion, %	29.1ª	24.5 ^b	29.4 ^a	0.00	<0.001	0.247	0.248	
Leg cut								
Weight, g	361 ^a	373 ^a	303 ^b	6.05	<0.001	0.677	0.735	
Proportion, %	30.3 ^a	32.6 ^b	31.7 ^b	0.00	<0.001	0.974	0.815	

Slaughter performance and meat cuts

ltem	HUB	LB	LSL	SEM	P-Value			
					GT	Feeding	GT*Feed	
Carcass weight (g)	1,191 ^a	1,148 ^b	957°	14.1	<0.001	0.609	0.629	
Slaughter yield (%)	64.6 ^a	61.3 ^b	58.7°	0.00	<0.001	<0.001	0.358	
Breast cut								
Weight, g	346 ^a	281 ^b	282 ^b	4.66	<0.001	0.237	0.668	
Proportion, %	29.1 ^a	24.5 ^b	29.4 ^a	0.00	<0.001	0.247	0.248	
Leg cut								
Weight, g	361 ^a	373 ^a	303 ^b	6.05	<0.001	0.677	0.735	
Proportion, %	30.3ª	32.6 ^b	31.7 ^b	0.00	<0.001	0.974	0.815	

FiBL www.fibl.org

Feed consumption

	HUB			LB			LSL		
	CF	Alf-ext	Alf-int	CF	Alf-ext	Alf-int	CF	Alf-ext	Alf-int
Total/group (kg)	144	150	159	236	269	234	259	295	251
kg feed/ kg carcass weight	4.03	4.20	4.50	6.81	7.85	6.85	9.00	10.53	8.60
kg feed/ kg liveweight	2.51	2.66	2.74	4.14	4.55	4.03	5.29	6.11	4.85

Meat quality

ltem	HUB	LB	LSL	SEM	P-Value			
					GT	Feeding	GT*Feed	
Max. shear force (N)	14.2 ^a	16.1 ^b	13.8ª	0.56	<0.001	0.628	0.405	
Crude protein (%)	26.5ª	25.8 ^b	26.2 ^{ab}	0.13	0.010	0.016	<0.001	
Crude fat (%)	2.18 ^a	2.32 ^a	1.44 ^b	0.17	<0.001	0.038	<0.001	

Conclusions

- Discussions on the culling of one-day old male layer hybrids require an alternative.
- > Less efficient fattening performance of male layer hybrids
 - > LB reached a similar liveweight after 91 d
 - > Longer fattening period and higher feed consumption
- > Minor influences of the dietary treatments offer opportunities
 - Lower protein contents with reduced soybean may at least partly compensate the lower efficiency
- But: remains open, if the fattening of male layer hybrids offers a solution to completely abolish chicken culling

Thank you for your attention!

Feed consumption

	HUB			LB			LSL		
	CF	Alf-ext	Alf-int	CF	Alf-ext	Alf-int	CF	Alf-ext	Alf-int
Total/group (kg)	144	150	159	236	269	234	259	295	251
kg feed/ kg carcass weight	4.03	4.20	4.50	6.81	7.85	6.85	9.00	10.53	8.60
kg feed/ kg liveweight	2.51	2.66	2.74	4.14	4.55	4.03	5.29	6.11	4.85

