Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences

Analysis of different definitions of performance traits in riding horses

V. Welker¹, K. Schöpke², M. Wensch-Dorendorf¹, H. H. Swalve¹

¹ Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Theodor-Lieser-Str. 11, 06120 Halle, Germany,

² Sächsische Gestütsverwaltung, Schloßallee 1, 01468 Moritzburg, Germany;

viktoria.welker@landw.uni-halle.de

Background

 Integrated genetic evaluation in Germany is based on results of mare / stallion performance tests, young horse competitions, and competition performance in show jumping and dressage

(von Velsen-Zerweck, 1999)

 \rightarrow as transformed rank (repeated observations) (Hassenstein, 1998)

 \rightarrow very low heritabilities (dressage h²=0.08, show jumping h²=0.04)

 \rightarrow definition and comparative analyses of alternative traits

Material

- results of dressage and show jumping competitions in Germany between 1995-2014
- data sources: German national federation (FN) through vit

	Number of performances	Number of horses	
Dressage	4,582,191	221,132	
Show jumping	9,997,439	253,945	

Highest level achieved

□ highest performance in competition

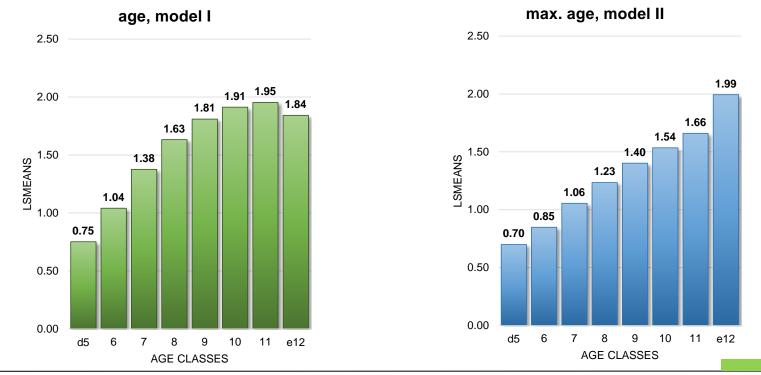
continuous trait allowing distinction between winners, placed horses and participants on each individual performance level

□ minimum requirement of 3 performance records on highest levels,

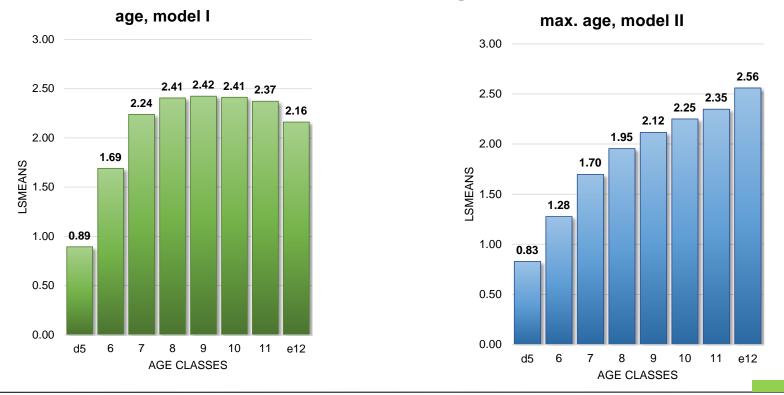
performance level	participation	placing	win
А	1.0	1.3	1.6
L	2.0	2.3	2.6
Μ	3.0	3.3	3.6
S	4.0	4.3	4.6
S**	5.0	5.3	5.6
S***	6.0	6.3	6.6

Methods

- ASReml (Gilmour et al., 2009)
- linear animal models
- additive relationship matrix


$$I \quad y_{ijkl} = \mu + Sex_i + Age_i + Year_k + animal_l + e_{ijkl}$$

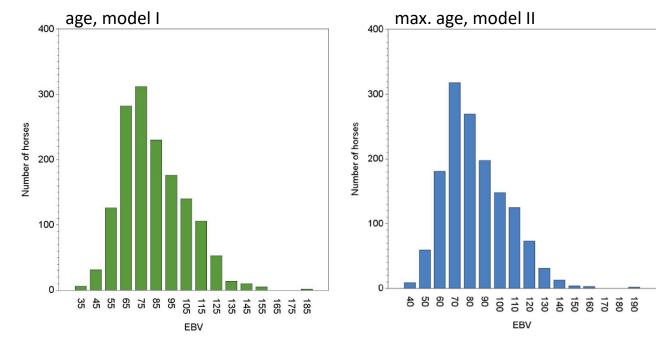
$$II \quad y_{ijkl} = \mu + Sex_i + max. Age_i + Year_k + animal_l + e_{ijkl}$$
age at the highest
performance
maximum age in
competition data


Genetic parameters

discipline	model	σ²a	σ²e	σ ²ρ	h²	Se h²
Dressage	I	0.235	0.743	0.978	0.240	0.006
	П	0.220	0.732	0.952	0.231	0.006
Show jumping	I	0.328	0.711	1.039	0.316	0.006
	II	0.358	0.674	1.033	0.347	0.006

LSMeans Dressage

LSMeans Show jumping

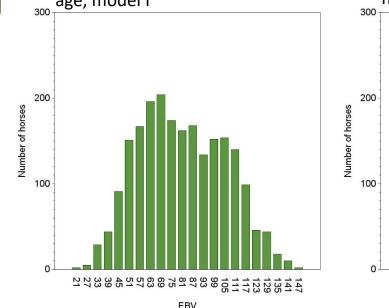


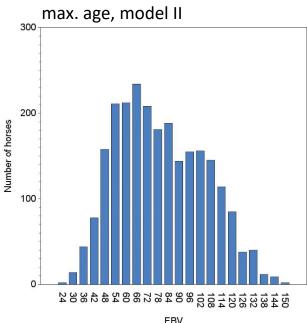
67th Annual Meeting of the European Federation of Animal Science, Viktoria Welker *et al.*

7

Distribution of EBVs for stallions: Dressage

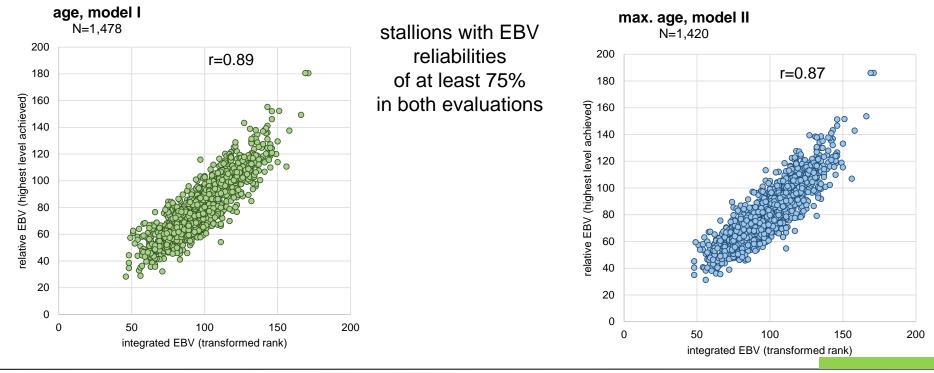
Base population: stallions with birth year 2002-2006 and own performance in dressage or at least 5 competing offspring (N= 408)

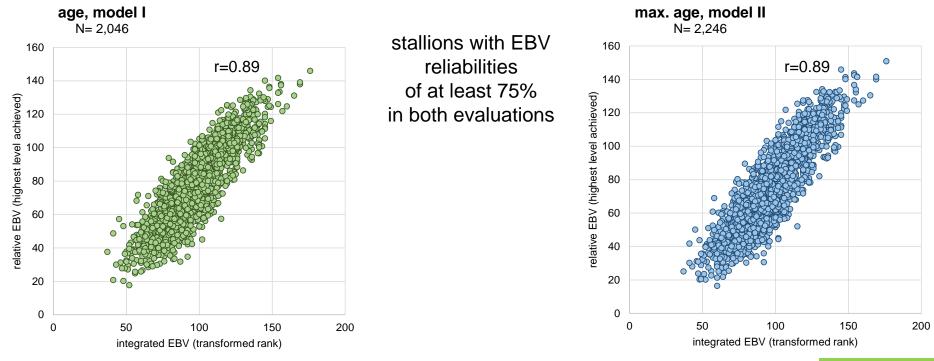



Model	N	Mean	SD	Min	Max
I (age)	1,493	83.29	21.25	33	185
II (max. age)	1,433	84.07	20.97	36	191

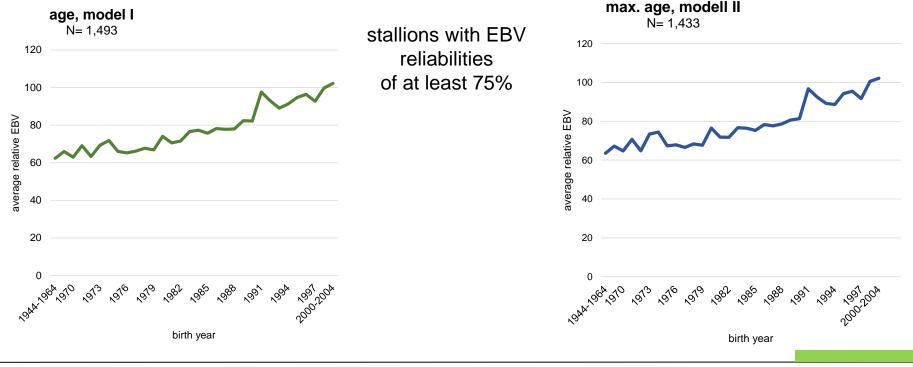
Distribution of EBVs for stallions: Show jumping

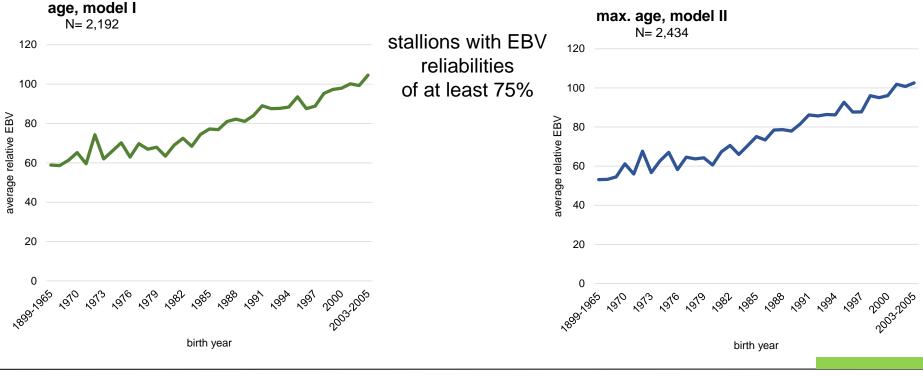
Base population:


stallions with birth year 2002-2006 and own performance in show jumping or at least 5 competing offspring (N= 532)



Model	N	Mean	SD	Min	Max
I (age)	2,192	81.03	24.41	21	149
II (max. age)	2,430	79.51	24.62	23	152


Highest level achieved vs. transformed rank (Dressage)


Highest level achieved vs. transformed rank (Show jumping)

Genetic trends (Dressage)

Genetic trends (Show jumping)

Conclusions

- similarity of results:
- \rightarrow different models (alternative traits; age vs. max. age)
- \rightarrow alternative traits (highest level) and routine GE traits (transformed rank)
- but: higher heritabilities \rightarrow higher reliabilities
- Highest level achieved supposed to better reflect the breeding goal of sport horse breeding
- complexity of competition performance: age → learning (speed / shape of curve) max. age → potential for top level performance
- challenges of data structure (pre-selection, censoring, confounding between genetic and rider effect)
- prospects: integration of additional competition data (national and international)

Thank you for your attention!

This research was supported by

H. Wilhelm Schaumann Foundation

German national federation

