

S63 (abstract no. 23348)

67th EAAP Annual Meeting, 29 August - 2 September 2016, Belfast, Ireland

Implications of across-studbook genetic correlations between linear traits for sport horse breeding

F. Sperrle^{1,2}, Å. Viklund³, E. Thorén-Hellsten⁴, W. Schulze-Schleppinghoff⁵, K.F. Stock^{1,2*}

¹ IT Solutions for Animal Production (vit), Verden (Aller), Germany, ² Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), Hanover, Germany, ³ Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden, ⁴ Swedish Warmblood Association (SWB), Flyinge, Sweden, ⁵ Oldenburger Pferdezuchtverband e.V., Vechta, Germany; *E-mail: friederike.katharina.stock@vit.de

Background

- breeding progress and success of studbooks depending on strong and competitive breeding programs
 - trait definitions (clear, objective)
 - routine data collection and use
 - implementation of linear systems for riding horses
 - conformation and performance (gaits, jumping, behavior)
 - foals and/or adult horses (broodmares, stallions, young riding horses)
 - substantial improvement of phenotype data quality if accompanied by appropriate data quality management (regular training of judges, fine-tuning regarding linear trait definitions, ...)

Study approach

- increased importance of linear profiling in sport horse studbooks (worldwide inventory)
 - → expected increase of genetic evaluations and genomic applications for linear traits
 - extensive exchange of genetic material across studbooks
 - → transparency and knowledge about comparability of (new) traits and genetic proofs as crucial factors in international sport horse breeding
- across-studbook genetic correlation study on linear traits using estimated breeding values

Data

- estimated breeding values (EBV) from prototypes of genetic evaluations for linear conformation and performance traits
 - Oldenburg studbooks (OL, OS)
 - Swedish Warmblood studbook (SWB)
- different linear systems, recording context, documentation in the field, ..., but considerable overlap of (analogous / similarly defined) linear traits
- important for interpretation of comparisons:
 - differences in scale orientation
 - e.g. body direction [uphill downhill] vs. [downhill uphill]
 - risk of 'translation losses' when preparing an English cross reference e.g. walk: cadence [even - uneven] vs. rhythm [regular - irregular]

Linear profiling: Oldenburg studbooks

- comprehensive linear scheme, equally used for linear descriptions of foals, mares (studbook inspection, mare performance test) and stallions
 - 7-point linear scale (-3 to +3)
 - defect traits / special remarks regularly included (reduced scale: 0 to +3)
 - mobile system for electronic recording
 - tablet PC with own software
 - concentration of active documentation (deviations from average expression)

format and front topline		limbs		movement in hand			free moveme			ent movement under rider/on the lunge			
group	area		- extreme	e -3	-2	-1	0	1	2	3	+ extr	eme	
FORMAT	Breed type		plair	000		0	•	\odot	0	\odot	true to type		
	Gende	r expression	weal	weak 💿 💿 🔵			•	$\odot \odot \odot$		strong			
	Frame		small-framed	small-framed 💿 💿 🔵				🔿 💮 💮 large-framed			ramed		
	Calibe	r	ligh	. (0)	$\odot \odot \odot \bigcirc$		•	$\odot \odot \odot$		heavy	heavy		
	Chest	width	narrov	0	\odot	\odot	•	\odot	0	\odot	wide		
	Barrel		shallow (tucked-up) ())	٢	0	•	0	۲	٢	deep		
88 Linear Prof	filing Umbili	cal thickening				3	•	0	0	\odot	marke	d umbilical thickening	

-off date: 4th Juli 2016

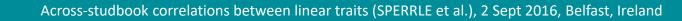
- linear data available for genetic analyses: 2012-2016^{*}, N=11,016 horses
 - N=6,953 linear profiles of foals
 - N=4,345 linear profiles of adult horses (mares, stallions)

Linear profiling: Swedish WB studbook

- linear scheme of medium size for linear descriptions of young horses
 - 9-point linear scale (A to I \rightarrow 1 to 9)
 - defect traits / special remarks as additional traits (Y/N)
- paper protocols for recording
 - trait-by-trait documentation
 - future development (since 2015): tablet PC (adjusted Oldenburg mobile system), concentration of active documentation (deviations from average expression)

Linear profile Height of withers									
	CONFORMATION	Obvious	Average	Obvious	Comment				
			A B C D E F G H I						
1	Туре	refined (i.e. light)		heavy	□ good proportions				
2	Body: shape a	long		short					
3	Body: shape b	long legged		short legged					
4	Body direction	uphill		downhill					
5	Length of neck	long		short	□ wide connection				
6	Position of neck	vertical		horizontal	□ low connection				
7	Shape of neck	arched		straight	heavy head-neck connection				
8	Withers	high		low					
9	Position of shoulder	sloping		straight	deep chest				
10	Line of back	straight		swayback					
11	Loins	long		short	□ roached back				
12	Shape of croup	sloping		straight					
13	Length of croup	long		short					

linear data available for genetic analyses: 2013-2014, N=1,889 observations (3-year-olds at young horse tests)


Sire EBVs for linear traits

genetic evaluations for linear traits based on:

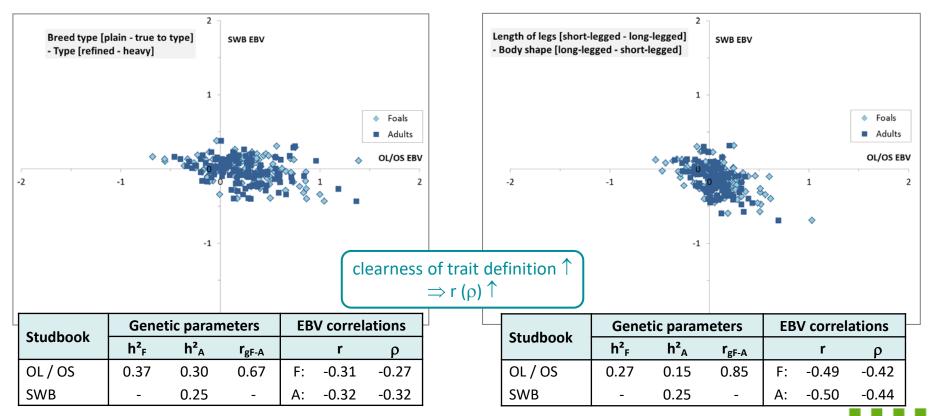
- OL/OS: linear data on foals and adult horses (→ uni- and bivariate analyses)
- SWB: linear data on 3-year-olds (\rightarrow univariate analyses)
- BLUP-EBV from linear animal models
 - $y_{ijk} = \mu + F_i + a_j + e_{ijk}$ and $y_{ijk} = \mu + F_i + a_j + pe_j + e_{ijk}$

		No. of linearly described progeny per sire within studbook					
Sire group characteristics	Progeny group	OL/OS (N _{sires} =1,627)	SWB (N _{sires} =331)				
All stallions:	foals	7.7 (max. 181) / N _{sires} =864	-				
linearly described progeny in OL/OS or SWB	≥2.5-year-olds	3.4 (max. 101) / N _{sires} =1,114	5.7 (max. 69)				
Stallion sample (N=132):	foals	18.2 (max. 174) / N _{sires} =87	-				
linearly described progeny in OL/OS and SWB	≥2.5-year-olds	11.9 (max. 101) / N _{sires} =119	4.4 (max. 46)				

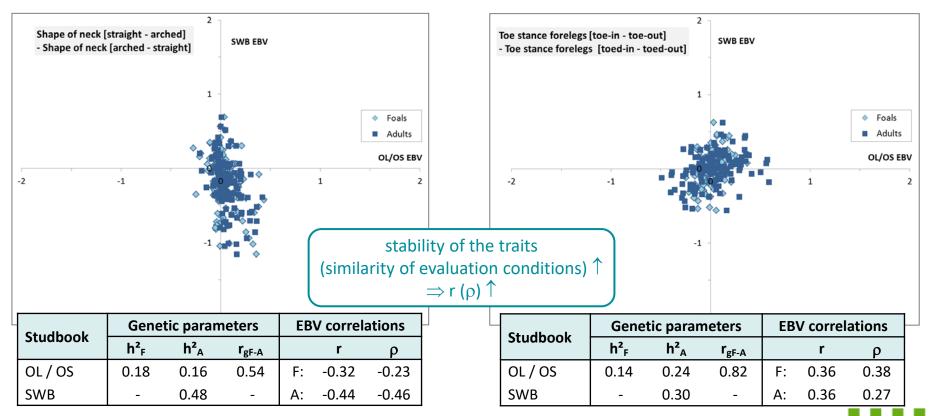
EBV correlations

- Pearson correlation coefficients (r) and Spearman rank correlations (ρ)
 - 'raw' correlations, i.e. without correction for EBV accuracies, so influenced by:
 - wide range of heritabilities (h² < 0.05 to h² > 0.70)
 - few stallions with higher reliabilities in both genetic evaluations

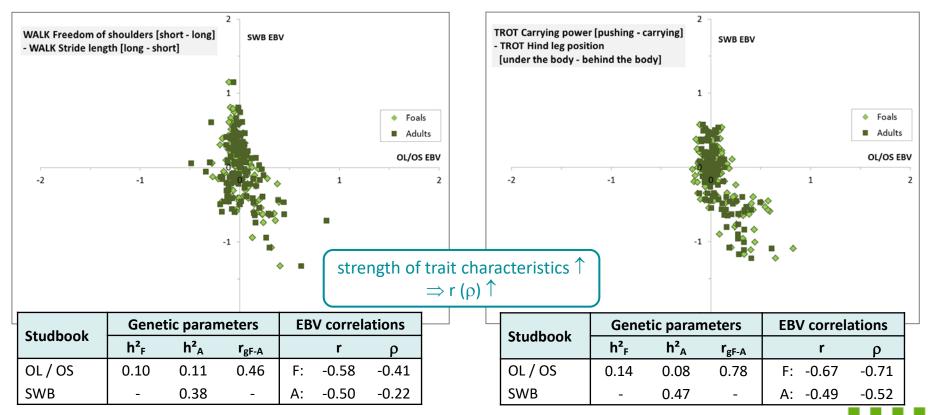
 h² n	0.05	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60
5	0.06	0.11	0.16	0.21	0.25	0.29	0.36	0.42	0.47
10	0.11	0.20	0.28	0.34	0.40	0.45	0.53	0.59	0.64
15	0.16	0.28	0.37	0.44	0.50	0.55	0.63	0.68	0.73
20	0.20	0.34	0.44	0.51	0.57	0.62	0.69	0.74	0.78
25	0.24	0.39	0.49	0.57	0.63	0.67	0.74	0.78	0.82
30	0.28	0.43	0.54	0.61	0.67	0.71	0.77	0.81	0.84
35	0.31	0.47	0.58	0.65	0.70	0.74	0.80	0.83	0.86
40	0.34	0.51	0.61	0.68	0.73	0.76	0.82	0.85	0.88


Approximation of EBV reliabilities, based on heritability (h^2) and the number of informative progeny (n):

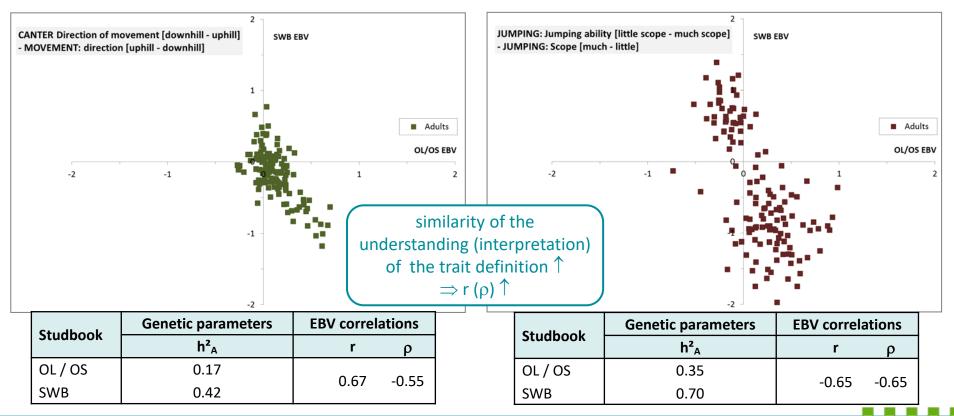
 $r^{2} = n / (n + k)$ with $k = (4 - h^{2}) / h^{2}$


EBV correlations: conformation (I)

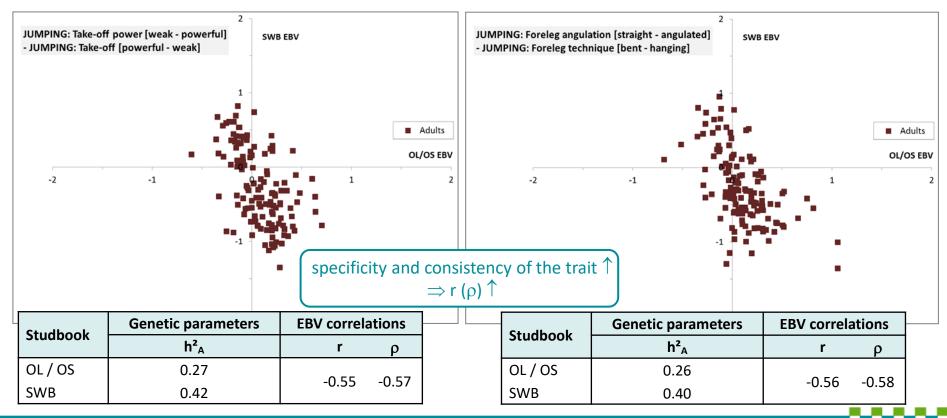
Across-studbook correlations between linear traits (SPERRLE et al.), 2 Sept 2016, Belfast, Ireland



EBV correlations: conformation (II)


EBV correlations: performance (I)

Across-studbook correlations between linear traits (SPERRLE et al.), 2 Sept 2016, Belfast, Ireland



EBV correlations: performance (II)

EBV correlations: performance (III)

Summary of results & Discussion

- plausible correlation patterns within and across studbooks
 - positive impact of objectivity and clearness of trait definition
 → 'easy' and 'not so easy' linear traits

e.g. EBV correlations higher for *length of legs* or *length of neck* than for *type*, higher for *croup length* than *croup shape*, relatively low for *hock angulation*

reflection of similarity of assessment and stability of linear traits
 e.g. aspects of shape of neck, strength of back and/or loins; height of withers

strong support of comparability of important linear traits across studbooks

- several EBV correlations of 0.5 to > 0.7 and few < 0.3 between analogous traits (despite the still low EBV reliabilities)
- similar breeding goals and high motivation to better capture them as drivers of consistency

Prospects

- next steps: increase of the power of the EBV correlation analyses by extending the basis of linear data used for genetic evaluation
 - OL / OS complete breeding season 2016
 - SWB young horse linear data 2015+
 - opportunities for refined comparative analyses
 - depth of the linear data allowing even more specific trait definitions (assessment conditions of performance: in hand, free, under rider)
 → more precise comparisons
 - ongoing R&D work on the new genetic evaluations: modelling, single- vs. multiple-trait settings, ...

Perspectives

- results of the comparisons of EBV for linear traits across studbooks as valuable supplements of data quality management
 - improved identification of more challenging linear traits → increased awareness as basis of improved education and training, targeted data checking
 - increased opportunities for studying the effects 'real life' data structures
- strengthening of initiatives for improved phenotyping as a whole
 - high value of early and comprehensive linear profiling (incl. foals)
 - increased motivation for continued activity in the dialogue across studbooks (meetings / workshops for exchange of experiences, joint training of judges, ...)
 - promising starting point for future across-studbook collaboration in R&D and routine: linear traits as target traits in genomic applications

Contact information

(vit, Genetic evaluation division / R&D):

PD Dr. habil. Kathrin F. Stock E-mail: friederike.katharina.stock@vit.de Phone: +49-4231-955 623 (Fax: -9623) Mobile: +49-176-60931357

promising starting point for future across-studbook collaboration in R&D and routine: linear traits as target traits in genomic applications

Thank you!