

Faculty of Agricultural and Nutritional Science

CAU

Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry

Impact of information load on the centrality parameters of a pig trade network in Northern Germany

Kathrin Büttner and Joachim Krieter

Institute of Animal Breeding and Husbandry Christian-Albrechts-University, Kiel, Germany

67th Annual EAAP Meeting Belfast, UK August 29th to September 2nd, 2016

Session 64, Abstract number 23513, kbuettner@tierzucht.uni-kiel.de

- Useful application of network analysis for agricultural sciences
 - → Behavioural research
 - Social structure of animal groups (friendships, aggressions)
 - Abnormal behaviour (feather pecking, tail biting)
 - → Epidemiological studies
 - Prediction of disease transmission
 - Implementation of appropriate control measures

- Useful application of network analysis for agricultural sciences
 - → Behavioural research
 - Social structure of animal groups (friendships, aggressions)
 - Abnormal behaviour (feather pecking, tail biting)
 - → Epidemiological studies
 - Prediction of disease transmission
 - Implementation of appropriate control measures

Challenge of network analysis:

Incomplete data sets & various information loads

Challenge of network analysis:

Incomplete data sets & various information loads

→ Missing or false positive nodes or edges

Challenge of network analysis:

Incomplete data sets & various information loads

- → Missing or false positive nodes or edges
- → Missing information about some of their attributes

Challenge of network analysis:

Incomplete data sets & various information loads

- → Missing or false positive nodes or edges
- → Missing information about some of their attributes

Challenge of network analysis:

Incomplete data sets & various information loads

- → Missing or false positive nodes or edges
- → Missing information about some of their attributes

Feed supply

Aim of the study

2. Assessing the network robustness, meaning the point at which incomplete data sets may influence the centrality parameters

Three network versions

Network A

Contains all trade
contacts with
information about the
supplier, the purchaser
as well as the truck

978 nodes

2.280 edges

Network B

Only those trade contacts stayed in the data set with full geographical location

866 nodes

1.884 edges

Network C

Only trade contacts
with additional
information about the
farms, e.g. farm type,
stayed in the data set

188 nodes

625 edges

Centrality parameters - "What characterizes a central or important farm?"

- → In-degree: Number of direct ingoing trade contacts
- → Out-degree: Number of direct outgoing trade contacts

Centrality parameters - "What characterizes a central or important farm?"

→ Betweenness: Number of shortest paths a farm lies on

Centrality parameters - "What characterizes a central or important farm?"

- → Ingoing closeness: Average distance from all other reachable farms
- → Outgoing closeness: Average distance to all other reachable farms

Comparison

- 1. Between different network versions
- 2. Within different network versions

Comparison

1. Between different network versions

Influence of various information loads on the outcome of network analysis

Materials & Methods – 1. Between different network versions

Materials & Methods

1. Comparison between different network versions

→ Pairwise calculation of the Spearman Rank Correlation Coefficients of the centrality parameters for all network versions

- Network A Network B
- Network B Network C
- Network A Network C

Results – 1. Between different network versions

Spearman Rank Correlation Coefficients between the network versions

■ Network A - Network B

■ Network B - Network C

■ Network A - Network C

Results – 1. Between different network versions

Spearman Rank Correlation Coefficients between the network versions

■ Network B - Network C

■ Network A - Network C

Network A - Network B

Discussion – 1. Between different network versions

Discussion

- 1. Comparison between different network versions
 - → Most robust results for out-degree and outgoing closeness
 - Highly right-skewed distribution of out-degree and outgoing closeness
 - In-degree, ingoing closeness and betweenness had a smaller range
 - It is more likely to remove a node with a relatively high in-degree than a node with a high out-degree

Comparison

2. Within different network versions

Assumption: Network elements (nodes & edges) which appeared less frequently did not really belong to the studied producer community

Materials & Methods – 2. Within different network versions

Materials & Methods

- 2. Comparison within different network versions
 - → Two removal scenarios
 - Removal scenario 1 (Removal of edges according to their frequency of appearance)
 - Removal scenario 2 (Removal of <u>nodes</u> according to their frequency of appearance)
 - → Calculation of the Spearman Rank Correlation Coefficient between the original network version and each removal step

Results – 2. Within different network versions

Removal scenario 1 Removal of edges according to their frequency of appearance

Results – 2. Within different network versions

Removal scenario 2 Removal of <u>nodes</u> according to their frequency of appearance

Discussion – 2. Within different network versions

Discussion

- 2. Comparison within different network versions
 - → Removal of nodes had less impact than removal of edges
 - Explanation: Topology of the pork supply chain
 - Farms with a low frequency are located at the margins of the network
 - Removal of nodes only trims the margins of the network
 - Edges with a low frequency can appear at every position in the network
 - Removal of edges leads to a higher fragmentation of the network

Conclusion

- Reliable results even if there are missing or false information in the data set
- Important if these centrality parameters are used for the prediction of disease transmission or the implementation of disease control measures

Thank you for your attention!

