

Faculty of Agricultural and Nutritional Science

AIU

Christian-Albrechts-University
Kiel
Institute of Animal Breeding and Husbandry

Genome-wide association studies for production traits in pooled pig F_2 designs

I. Blaj¹, J. Tetens¹, S. Preuß², R. Wellmann², J. Bennewitz², G. Thaller¹

¹Institute of Animal Breeding and Husbandry, Christian Albrecht University, Kiel, Germany ²Institute of Animal Breeding and Husbandry, University of Hohenheim, Stuttgart, Germany

> EAAP Annual Meeting 2016, Belfast, UK Session 67: Free communications in genetics 1st of September 2016

Outline

- Introduction
- Objectives
- Materials and Methods
- Results and Discussion
 - LD decay
 - Single cross analysis, meta-analysis and joint analysis
- Conclusions and Perspectives

Introduction

- gene mapping experiments in livestock
 - genetic architecture of quantitative traits
 - genetic markers to facilitate breeding progress
- several F₂ resource populations have been established and analyzed

resolution
precision
power

- meioses exploited
- number of individuals included
- marker density
- LD structure
 - \succ the length of the LD blocks can be reduced by pooling several F_2 crosses (Bennewitz and Wellmann, 2014)

Objectives

- three-generation experimental populations
 - Piétrain x Large White, Piétrain x (Large White x Landrace) European breeds cross
 - ➤ Meishan x **Piétrain**, Wild boar x **Piétrain** Asian/European breeds cross

phenotypes: average daily gain (ADG), back fat thickness (BFT), meat to fat ratio (MFR)

- combine data from two experimental F_2 crosses
 - structural identification of short chromosomal regions that show evidence for trait association

- total of **2,554 animals**
 - > 1,894 individuals European breeds cross PxLW/(LWxL)
 - 660 individuals Asian/European breeds cross M/WxP

- P / F₁ / F₂ genotyped with PorcineSNP60 BeadChip (Illumina)
 - SNP chromosomal positions current pig genome assembly (Sscrofa build 10.2)

 phenotypes were measured using similar methods and standardized techniques (Müller et al. 2000, Borchers 2002)

GWAS Workflow

Individual cross

Meta-analysis of the individual crosses

Pooled pre-corrected data

mixed linear model (MLM) based association analysis(GCTA version 1.26.0, Yang et al, 2011)

$$y = X\beta + g + \varepsilon$$
 with $V = \frac{WW'}{N} \sigma_g^2 + I \sigma_{\varepsilon}^2 = A \sigma_g^2 + I \sigma_{\varepsilon}^2$

Fixed effects

Cross/FE	European breeds cross	Asian/European breeds cross			
ADG	stable, slaughtering period	sex, cross			
BFT	sex, stable, slaughtering period, weight at slaughter	sex, slaughtering period, weight at slaughter, age at slaughter, cross			
MFR	sex, stable, slaughtering period, birth weight	sex, cross			

GWAS Workflow

Individual cross

Meta-analysis of the individual crosses

Pooled pre-corrected data

- ➤ METAL version 2011, Willer et al 2010
- > sample based approach
- analytical strategy

Input	N_i – sample size for study i P_i – p-value for study i Δ_i - direction of effect for study i				
Intermediate Statistics	$Z_i = \Phi^{-1}(P_i/2) * \operatorname{sign}(\Delta_i)$ $w_i = \sqrt{N_i}$				
Overall Z-score	$Z = \frac{\Sigma_i Z_i w_i}{\sqrt{\Sigma_i w_i^2}}$				
Overall P-value	$P = 2\Phi\left(\left -Z\right \right)$				

GWAS Workflow

Individual cross

Meta-analysis of the individual crosses

Pooled pre-corrected data

- phenotypes pre-corrected in the individual crosses
- ightharpoonup MLM: $y = X\beta + g + \varepsilon$

cross effect – 2 classes

Cross/FE	European breeds cross	Asian/European breeds cross			
ADG	stable, slaughtering period	sex			
BFT	sex, stable, slaughtering period, weight at slaughter	sex, slaughtering period, weight at slaughter, age at slaughter			
MFR	sex, stable, slaughtering period, birth weight	sex			

Results and Discussion

Tab. 1: Descriptive statistics and heritabilities (h_{SNP}^2 and $h_{pedigree}^2$) for average daily gain (ADG), back fat thickness (BFT) and meat to fat ratio (MFR)

Cross	Trait	N	mean	sd	min	max	h_{SNP}^2	$h_{pedigree}^2$
European	ADG[g]	1769	675.90	92.73	311.0	1039.0	0.35	0.47
Asian/European	ADG[g]	595	559.40	124.19	125.0	951.0	0.44	0.24
European	BFT[mm]	1766	27.49	3.84	16.00	42.30	0.43	0.43
Asian/European	BFT[mm]	595	19.44	6.93	3.70	43.30	0.47	0.56
European	MFR	1765	0.38	0.10	0.14	0.85	0.46	0.36
Asian/European	MFR	593	0.62	0.21	0.19	1.39	0.51	0.44

Results and Discussion

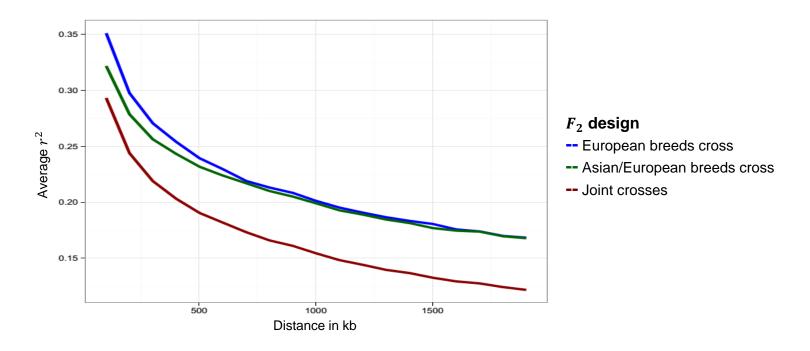


Fig. 1: LD decay over physical distance

ADG – average daily gain

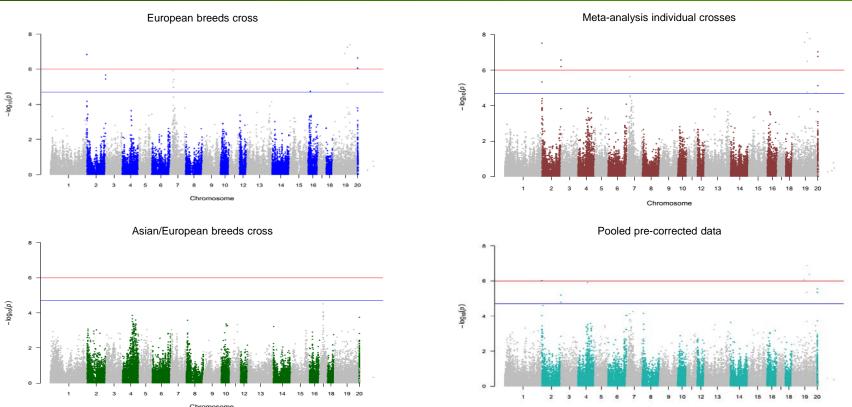


Fig. 2: Manhattan plot of genome-wide association studies for average daily gain. The red line indicates the Bonferroni–corrected significance threshold ($P=1.1x10^{-6}$) and the blue line indicates the threshold ($P=2.2x10^{-5}$) for suggestive SNPs.

BFT – back fat thickness

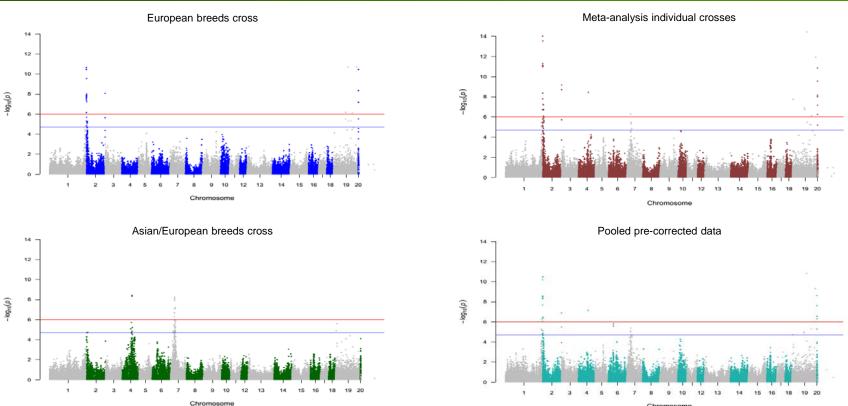
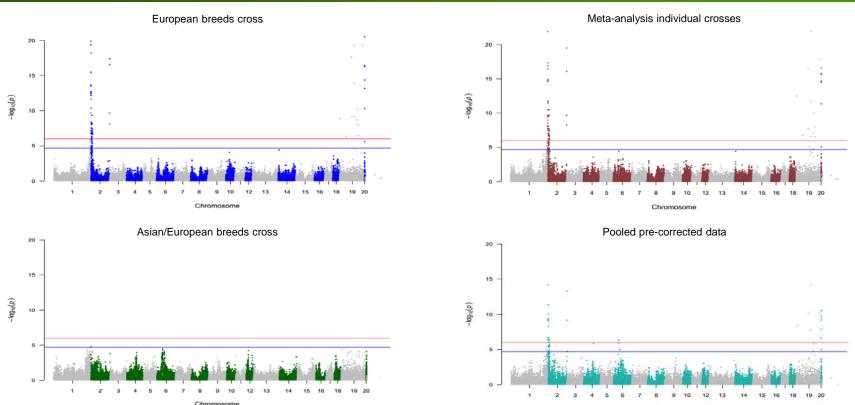



Fig. 3: Manhattan plot of genome-wide association studies for back fat thickness. The red line indicates the Bonferroni–corrected significance threshold ($P=1.1x10^{-6}$) and the blue line indicates the threshold ($P=2.2x10^{-5}$) for suggestive SNPs.

MFR – meat to fat ratio

Fig. 4: Manhattan plot of genome-wide association studies for meat to fat ratio. The red line indicates the Bonferroni–corrected significance threshold ($P=1.1\times10^{-6}$) and the blue line indicates the threshold ($P=2.2\times10^{-5}$) for suggestive SNPs.

Conclusions and Perspectives

Conclusions

- the meta-analysis was generally more powerful in detecting more precise locations and higher significance levels in the combined crosses vs. single cross
- association levels in pooled pre-corrected data were lower than in the meta-analysis
- > common underlying variants that show a different frequency between the two crosses
- chromosomes showing significant evidence for trait association in the meta-analysis
 - > ADG SSC2; BFT SSC2, SSC4, SSC7; MFR SSC1, SSC2

Perspectives

- heterogeneous residual variance to be modelled in the joint analysis
- \triangleright sequencing of the P \Longrightarrow imputation \Longrightarrow Whole-genome sequence based association studies

Thank you for your attention!

Questions?

*The authors would like to thank the German Research Foundation (*DFG*) for funding.