Implementation of genomic selection in three French regional dairy cattle breeds

Dávid Jónás

PhD candidate – 3rd year

Marie-Pierre Sanchez

Aurelia Baur Vincent Ducrocq Chris Hozé Romain Saintilan Florence Phocas Sébastien Fritz Pascal Croiseau Didier Boichard

Ecole Doctorale

BIES

Introduction

- Benefits of genomic selection
 - Larger annual genetic gain
- Regional breeds
 - Small reference populations
 - Increasing genetic gap between regional and international breeds

	Abondance	Tarentaise	Vosgienne
Nr. of progeny-tested bulls	15	10	3
Nr. of cows in milk recording	23,412	7,816	1,372

 Objective: Implement genomic evaluation in regional dairy breeds

Abondance

Tarentaise

Vosgienne

Datasets

- Limited progeny testing
 - ~25 progeny/bull
- Larger number of genotyped females
 - Females represent less information for lowly heritable traits

Brood	Number of genotyped animals			
Dieeu	Male	Female	Male equivalent	
Abondance	389	2769	1593	
Tarentaise	323	1569	1005	
Vosgienne	66	1171	575	

Datasets

- Phenotype data on production traits
 - 34-40 traits, including:
 - Production traits (5)
 - Fertility traits (3)
 - Type traits (23-29)
 - Clinical mastitis, somatic cell count, longevity
- Genotype data
 - 50K SNP-chip (43,801 SNP)
 - LD SNP-chip (8,218 SNP)
 - Imputation accuracy (CR): 99.6%
 - Haplotypes
 - Combination of N SNP (N=4)

Genomic evaluation pipeline

Validation study

- Classical validation study
 - 80% oldest individuals in the training population
 - Including all bulls
 - 20% youngest animals in the validation population
- Estimated parameters
 - Correlation coefficients between YD and GEBV
 - (Regression slopes of YD on GEBV)
 - Reliabilities of selection candidates
- Pedigree-based BLUP analysis

Results

Correlation coefficients between YD and GEBV (production traits)

Method	Number of haplotypes	Abondance	Tarentaise	Vosgienne
BLUP		0.346	0.391	0.418
Genomic evaluation	250	0.454	0.446	0.420
	500	0.454	0.449	0.426
	1000	0.459	0.449	0.430

Results

- Genomic evaluation outperforms the pedigree-based BLUP
- Largest gain in Abondance (largest training population)

Reliabilities of selection candidates (%)

	Nr. of males	Nr. of females	Production	Somatic cell count	Fertility	Type traits
Abondance	389	2769	54	51	40	51
Tarentaise	323	1569	52	48	34	49
Vosgienne	66	1171	54	45	33	49

- Reliabilities reflect training population sizes
- Similar reliabilities to those with progeny-testing
 - Sufficiently high for official publication
 - Now for both males and females
 - First breeding values in fertility traits for females

Multi-breed genomic evaluation

- Multi-breed genomic evaluation?
 - Enlarged reference population
 - But lower LD between markers and QTL
- Assess the efficiency of multi-breed genomic evaluation in these breeds

Results – LD decay

- Based on HD SNP-chip data
- Very similar level of LD among the breeds
- Multi-breed LD is slightly lower than within-breed

Correlation coefficients between YD and GEBV (production traits)

Method	Number of haplotypes	Abondance	Tarentaise	Vosgienne
BLUP		0.346	0.391	0.418
Genomic evaluation (SB)	250	0.454	0.446	0.420
	500	0.454	0.449	0.426
	1000	0.459	0.449	0.430
Genomic evaluation (MB)	1000	0.509	0.439	0.412

Multi-breed training population

- Advantageous only in Abondance
- Gain in correlation increases with the number of haplotypes

Conclusions

- Genomic evaluation has been successfully implemented in the 3 regional breeds in France since March, 2016
 - Genomic selection is feasible in regional breeds
 - Mixed reference population (M+F)
 - More bulls are evaluated than were progenytested earlier
- Multi-breed genomic evaluation can be efficient as well

Thank you for your kind attention!

Abondance

Tarentaise

Vosgienne

Research funding was provided by:

Ecole Doctorale A B I E S

