

Substitution rate between forage supplement and grazed pasture in dairy cows: a meta-analysis

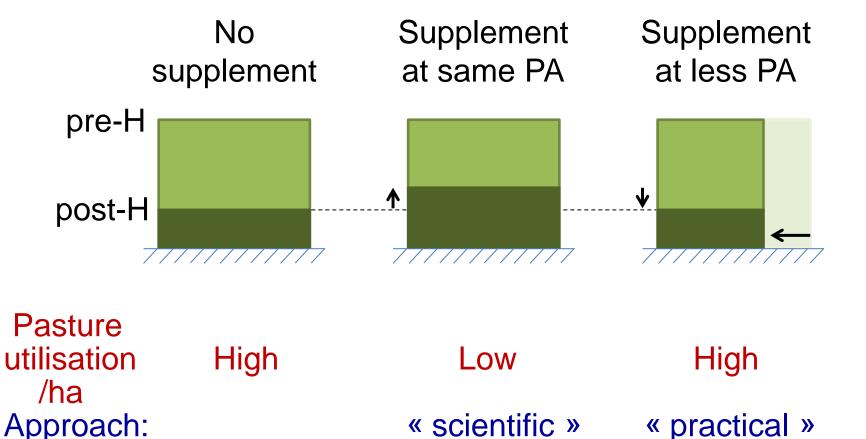
M.F. Miguel, H.M.N. Ribeiro Filho, R. Delagarde

Saint-Gilles, France

Lages, Brasil

Background

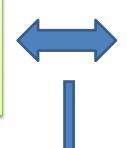
Grazing is amazing:


- High-quality forage (E and N)
- Lowest cost of production
- but periods of pasture shortage (summer, autumn)
 - limited grazing area with large herds
- very frequent « mixed diets »: grazing/conserved forage

Nutritional effects of a forage supplementation?

Forage intake ⇒ less pasture intake ⇒ more milk ?
Literature for Forage <<<< for Concentrate

Definitions


Two ways for managing grazing when cows are supplemented

Objective of the meta-analysis

Forage supplementation

Nature Amount

Grazing management

Pasture allowance

Substitution rate and milk production response of dairy cows

Methodology

- Only within-experiment animal responses (without FO) vs. (with FO) treatments

- Required data: pasture intake, milk, herbage allowance

Filtering: Temperate regions

No concentrate variation

No restriction of daily access time

- Database split in two parts:

D1: Same PA between Control and Exp: « scientific »

D2: Less PA in Exp than in Control: « practical »

Results – D1: Same PA

+ 4.6 kg DM forage, Low PA: 25 kg DM/d

Supplement type	Total n=62	Maize silage n=34	Pasture silage n=12	Hay n=16
Substitution rate kg DM /kg DM	0.40 ± 0.29	0.36	0.31	0.51
Milk yield response kg milk /kg DM	0.39 ± 0.31	0.53	0.30	0.22

Results – D1: Same PA

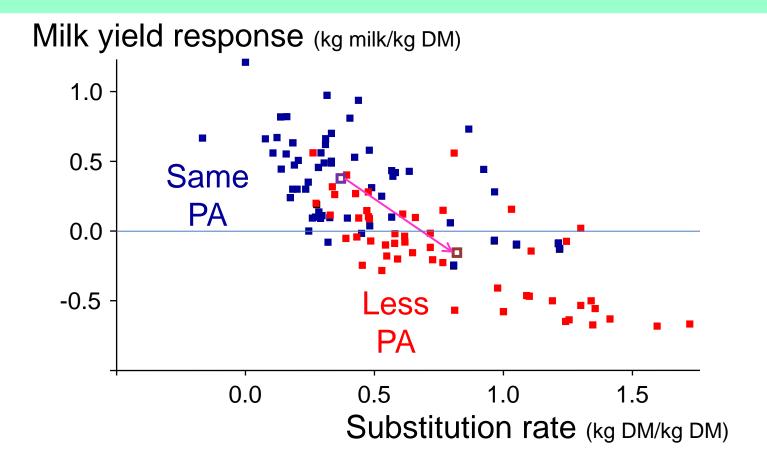
✓ substitution rate with ✓ PA (+ 0.17 per 10 kg of PA)

From 0.2 to 1.0 from Low to High PA

: Maize silage

: Pasture silage

♦: Hay


Results – D2: Less PA

+ 7.3 kg DM forage, - 19 kg/d PA, -2.7 kg PA/kg forage

Database	D2 Less PA n=52	D1 Same PA n=62
Substitution rate (kg DM /kg DM)	0.79 ± 0.38	0.40 ± 0.29
Milk yield response (kg milk /kg DM)	-0.13 ± 0.33	0.39 ± 0.31

Less PA: ✓ substitution rate, resulting from the cumulative effects of supplementation AND of less PA

Global database

Less PA: overall translation to more substitution and less milk response

Conclusions

- Large variations of substitution pasture/forage (from 0 to 1)
 largely explained by PA
- At same PA, positive milk response to forage supplement
- But in practice, no milk response to forage supplement High pasture utilisation = $\ \ PA = \ \$ substitution

Practical implication

 No interest to supplement cows with a conserved forage if no pasture deficit at farm level

Maximise the use of grazing on dairy farms !!!

Thank you for your attention

Miguel et al. – Forage supplementation of grazing dairy cows – EAAP Belfast – 01/09/2016