

Discrepancy between expected and actual benefits of automatic heat detectors in commercial dairy herds.

C. Disenhaus¹, C. Allain², R. Courties³, Y. Quiniou¹, N. Bareille³

¹ UMR 1348 PEGASE INRA-Agrocampus-Ouest, Rennes, ²IDELE, Le Rheu, ³ UMR 1300 BioEpar ONIRIS-INRA, Nantes, France.

Context and question

- Automatic heat detectors (AHD): one of the « first » PLF devices (number, commercialisation),
- Which have answered to expressed expectations of farmers

Do the farmers get what they expected?

Decision-making tools

Materials and methods: semi-directive survey

1- Identification of farms:

32 commercial dairy farms within 2 lists provided by advisors, To enhance the diversity (pedo-climatic characteristics, breed, size, yield/cow, milking system, AHD system...).

From West (oceanic climate, plain) to East (low mountain)

Jura (Doubs)

Diversity of systems

	Number of	Milk yield (kg/cow/y)	Milking system	
	dairy cows		Classic	AMS
Bretagne	30 to 135	7 000 to 10 400	10/20	10/20
Jura	39 to 194	6000 to 11 800	10/12	2/12

1 to 8 partners 0 to 100% grass Standard or PDO (Comté) production

Reproduction:

Calving period AI only (18) Visual > 6 months AI + Bull (14) detection

Materials and methods: semi-directive survey

1- Identification of farms

2- Interview guide

•	Which	motivations?	Why?
---	-------	--------------	------

How do you make the choice? What?

How do you use the AHD? How?

Which satisfaction and benefits?

Materials and methods: semi-directive survey

- 1- Identification of farms
- 2- Interview guide

Systematic recording.

First step: spontaneous expression; second step: proposition of items.

≈1h30/interview

4- Qualitative treatment of interviews

Why?

- Mainly to increase detection and/or reproduction performances
- Especially when sexed semen was used (16/25)

Consistent with the speeches of companies

[Better heat detection leads to higher pregnancy rates and fewer open days; saves drug costs; saves on observation, pregnancy checks and hormone treatments]

How? From AHD alert to service: various practices, from delegation to security

Alert

Confirmation?

Delegation

Intermediate

Security

So? A light felt impact on technic/economic performances

Most of them don't really know if their device have an impact

« I have the impression that » « Finally I don't know » « Finally I don't care »

So? A strong impact on labour comfort

Less stress but few effect on working time (5/32)

So? In short

29/32 are satisfied (or fully satisfied) with their AHD

Even though they didn't get what they expected!

"I feel safer" "It reassures"

In conclusion

- AHD is a good example of convenient and easy to use
 PLF device.
- There is a discrepancy between expected and actual benefits of AHD
- Comfort in their labour, and not only working time, is one of the keys for farmer's satisfaction.

How to evaluate comfort? How to include comfort in decision-making tools?

