

Holstein-Friesian vs 3-breed crossbred dairy cows within a low and moderate concentrate input system

Conrad Ferris¹, Peter Purcell¹, Alan Gordon¹, Torben Larsen² and Mogens Vestergaard²

¹ Agri-Food and Biosciences Institute, Northern Ireland. ² Aarhus University, Denmark.

www.afbini.gov.uk

Introduction (I)

- Holstein-Friesian: high milk production efficiency, but suffered a long term decline in some functional traits (fertility and health) due to historical selection programmes
- How can we address the problem?

-

- Nutritional strategies
- Genetic strategies
- Alter breeding goals/selection indexes
- Breed substitutionCrossbreeding

- Why consider crossbreeding?
 - Breed complementarity: introduction of desirable traits from a second breed which may be absent of occur at a low frequency in the recipient breed
 - Hybrid vigour
 - Reduce inbreeding

Introduction (II)

- Previous AFBI research on crossbreeding examined Jersey x Holstein crossbred cows
- Smaller cows, but similar yield of milk solids as Holstein cows within low and moderate input systems
 - Improved fertility, fewer cases of mastitis and hoof problems
- Improved longevity and profit
- But how should we breed the F₁ crossbred ?
 - Criss-crossing?
 - Proven crossbred sires ?
- Three-way rotational cross ?
 The latter should maximise hybrid vigour

Three-breed rotational crossbreeding scheme adopted

Holstein

Jersey

Swedish Red

Objective of the current study

To examine the performance of Holstein-Friesian and 3breed crossbred dairy cows within a low and moderate concentrate input system

Methodology (I)

2 x 2 factorial design experiment (2 genotypes x 2 systems)
68 Spring calving dairy cows

- > 34 Holstein-Friesian (HF)
- 34 '3-breed crossbreds
 - Swedish Red x Jersey x Holstein-Friesian (SRx)
 - mean lactation number, 2.8
 - mean calving date, 15 February
- 2 production systems:
 - Low concentrate input (Low)
 - Moderate concentrate input (Moderate)
- Full lactation study

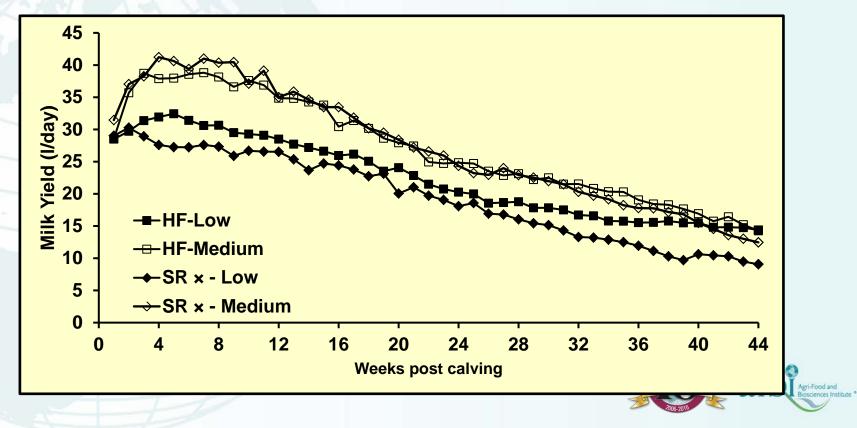
Methodology (II) Description of systems

Low input	Moderate input
Grass silage + concentrates	Grass silage + concentrates
(mixed in 70 : 30 DM ratio)	(mixed in a 40 : 60 DM ratio)
Grazed grass plus 1.0 kg	Grazed grass plus 4.0 kg
concentrate	concentrate
Grass silage + concentrates	Grass silage + concentrates
(85 : 15 DM ratio)	(70 : 30 DM ratio)
0.85	2.1
	Grass silage + concentrates (mixed in 70 : 30 DM ratio) Grazed grass plus 1.0 kg concentrate Grass silage + concentrates (85 : 15 DM ratio)

Dry matter intakes in early lactation

	Sys	Gen	otype		S	Significa	ince	
	Low input	Moderate input	Hol	SR x	s.e.d.	Sys.	G	Sys. x G
Concentrate	4.9	11.5	8.6	7.8	0.26	***	***	NS
Silage	9.3	7.1	8.8	8.1	0.23	***	*	NS
Total	14.2	19.2	17.4	15.9	0.45	***	***	NS

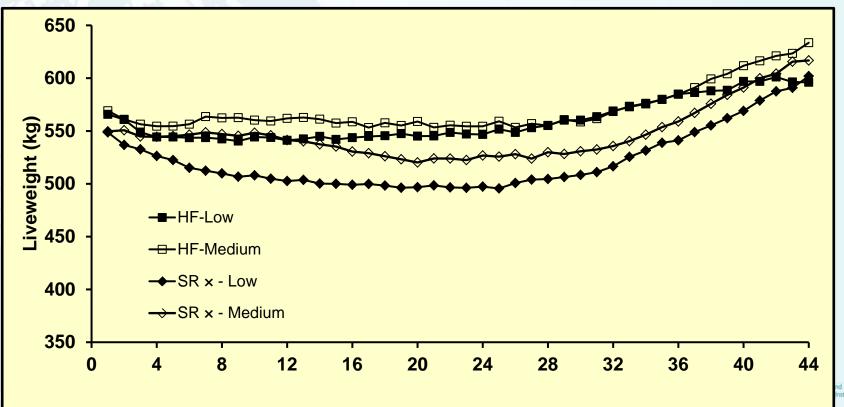
Dry matter intakes in late lactation


	System		Genotype			S	Significance		
	Low input	Moderate input	Hol	SR x	s.e.d.	Sys.	G	Sys. x G	
Concentrate	3.2	7.6	5.5	5.3	0.16	***	NS	NS	
Silage	11.0	9.7	10.4	10.2	0.44	*	NS	NS	
Total	14.0	16.4	15.2	15.1	0.76	***	NS	NS	

Full lactation milk production

	Sy	stem	Gene	Genotype		Significance		ce
	Low input	Moderate input	Hol	SR x	s.e.d.	Sys.	G	Sys. x G
Milk Yield (kg/cow/day)	6043	7645	7310	6378	267.5	***	***	NS
Milk fat (g/kg)	44.2	43.6	41.5	46.3	1.02	NS	***	NS
Milk protein (g/kg)	34.0	34.8	33.4	35.4	0.46	NS P = 0.088	***	NS
Energy-corrected milk yield (kg/lactation)	6278	8004	7370	6914	268.2	***	NS P = 0.070	NS
Somatic Cell Score (log ^e basis)	11.34	11.54	11.22	11.66	0.081	NS	*	NS

Lactation curves over the first 44 weeks of lactation



Mean live-weight and BCS

	System		Genotype			Significance		nce
	Low input	Moderate input	Hol	SR x	s.e.d.	Sys.	G	Sys. x G
Mean liveweight	535	554	560	530	5.4	***	***	NS P = 0.064
Mean BCS	2.26	2.31	2.16	2.42	0.033	NS	***	NS

Live-weight changes over the first 44 weeks of lactation

Fertility performance

	System		Genotype			Significance		
	Low input	Moderate input	Hol	SR x	s.e.d	Sys.	G	Sys. x G
Days to 1 st observed heat	32	37	37	32	5.2	NS	NS	NS
Conception to 1 st + 2 nd service (%)	76	53	70	60	11.3	NS P= 0.077	NS	*
Pregnancy after 14 weeks (%)	86	82	78	90	8.1	NS	NS	*

Mastitis and lameness incidence

	System		Genotype			Significance		
	Low input	Moderate input	Hol	SR x	s.e.	Sys.	G	Sys. x G
At least 1 case of mastitis (%)	16	17	26	6	7.7	NS	*	NS P = 0.10
At least 1 case of lameness (%)	16	6	10	13	7.6	NS	NS	NS

Conclusions

- Crossbred cows had lower intakes in early lactation
- Crossbred cows had a lower full lactation milk yield, but produced milk with a higher fat and protein content
- No effect of genotype on milk solids yield
- No interaction between genotype and production system for milk yield
- Crossbred cows were lighter than Holstein cows, but had a higher body condition score
- Fertility not improved with crossbred cows
- Crossbred cows had fewer incidences of mastitis

Acknowledgements

Funding - EU FP7 and DAERA

