Effect of different regrowth grass silages on dairy cow performance

D. Pang, P. Huhtanen & S.J. Krizsan

Swedish University of Agricultural Sciences (SLU), Department of Agricultural Research for Northern Sweden, S-901 83 Umeå, Sweden.

Outline

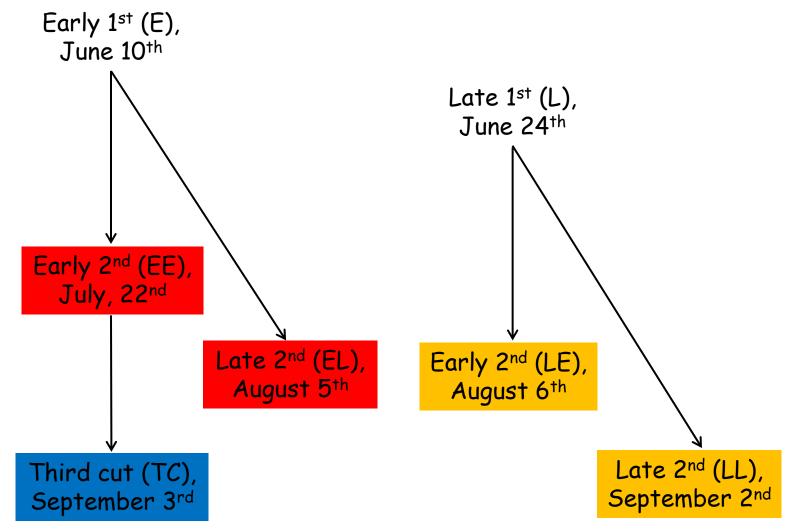
- 1. Background and Objective
- 2. Materials and Methods
- 3. Results
- 4. Conclusions

1. Background and Objective

- > Grass represents 40-60% of the total DMI in livestock diets.
- > Grass harvesting time is the most important feed value factor affecting intake and milk production.
- > There is a lack of studies of dairy cow performance when fed diets based on regrowth grass silages harvested at different growth stages.

Objective:

To evaluate the effect of five regrowth grass silages on dairy cow production performance


2. Materials and Methods

Harvesting Strategies

2 & 3-cut harvesting systems 2-cut harvesting system

Indigestible NDF

Fermentation quality

Lactic acid

Acetic acid

Butyric acid

NH₃-N, g/kg total N

148

37.2

102

15.2

< 0.3

143

33.5

110

19.5

< 0.3

TC

220

197

459

77.6

41.9

117

16.3

< 0.4

177

74

82.9

27.1

<0.3

SLU	Silage	quaii	ту (д/	Kg DM)				
		EE	EL	LE	LL			
DM, g/kg		262	265	261	311			
Composition								
CP		178	125	137	111			
NDF		523	557	556	524			

76.3

31.6

79.3

18.2

<0.3

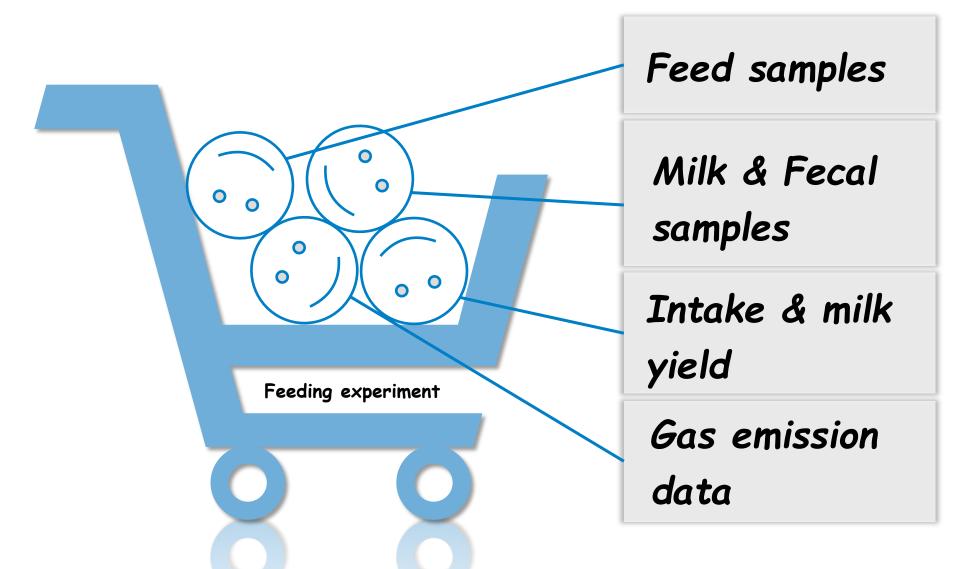
Animal Feeding Experiment

Diets:

5 experimental diets with 58% of grass silage, 34% of crimped barley and 8% of rapeseed meal on DM basis

Experimental Design:

30 Swedish red cows in 5×4 unbalanced Latin square design with 21-day periods



Chemical compositions of diets (g/kg DM)

	Silage source							
	EE	EL	LE	LL	TC			
DM, g/kg	381	384	379	432	330			
CP	171	142	149	135	182			
NDF	386	404	403	387	351			
Indigestible NDF	72.9	117	112	133	75.6			

Samples and Data

3. Results

Intake data (kg/d)

		P-value								
	EE	EL			TC		C2	<i>C</i> 3		
DW	22.4	21.2	20.3	20.6	20.8	<0.01	0.01	0.20		
CP	3.9	3.0	3.1	2.8	3.8	<0.01	<0.01			
pdNDF	6.9	5.9	5.8	5.2	5.6	<0.01	<0.01	<0.01		

- √ C1 = effect of harvest time of the first cut (EE and EL vs. LE and LL);
- √ C2 = effect of growth stage in second cut regrowth (EE and LE vs. EL and LL);
- \checkmark C3 = effect of second cut vs. third cut.

Production data

		Sila	ge sou	P-value				
	(EE)	EL	LE	LL	TC	<i>C</i> 1	C2	<i>C</i> 3
· J							<0.01	
Fat, g/d	1284	1162	1172	1114	1247	<0.01	<0.01	<0.01
Protein, g/d							<0.01	
MUN, mM	4.58	4.24	4.43	3.78	5.17	<0.01	<0.01	<0.01

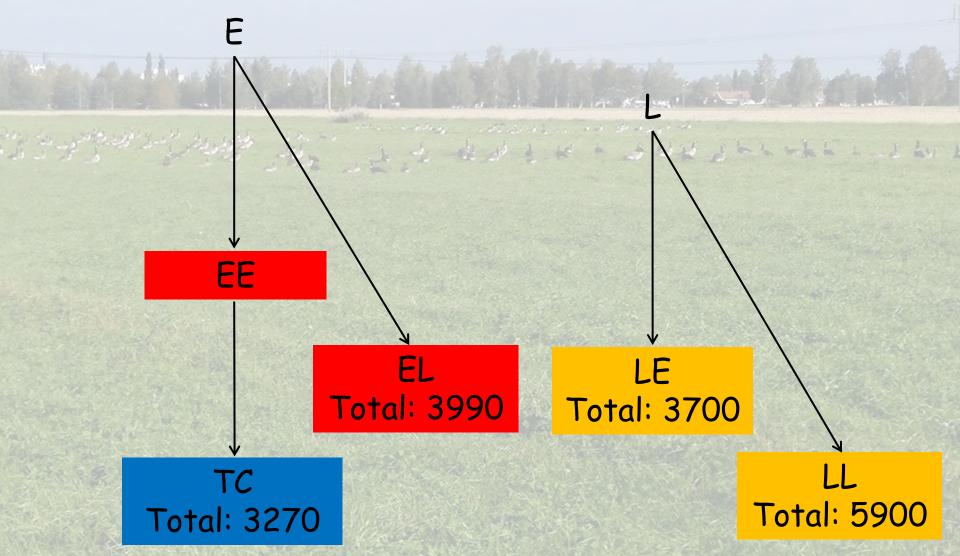
- ✓ Postponing the primary growth harvest, ECM, and milk fat and protein yields decreased.
- ✓ With progressing regrowth, the effects were similar.
- ✓ Feeding third cut silage, ECM, and milk fat and protein yields increased.

Digestibility data (g/kg)

			ge so	P-value				
	EE	EL	LE	LL	TC	<i>C</i> 1	C2	
OM	747	694	702	660	738	<0.01	<0.01	<0.01
CP	716	662	674	606	699	0.01	<0.01	<0.01
pdNDF	831	780	797	725	823	<0.01	<0.01	<0.01

- ✓ Postponing the primary growth harvest, digestibility of dietary components decreased.
- ✓ With progressing regrowth, digestibility of dietary components decreased.
- ✓ The second cut silages were less digestible than the third cut silage.

Production efficiency data


		Silac	ge sou		P-value	C2 C3		
	EE	EL	LE	LL	TC	<i>C</i> 1	C2	<i>C</i> 3
ECM/DMI	1.40	1.35	1.43	1.35	1.50	0.45	0.01	<0.01
N, g/kg	273	310	299	323	273	<0.01	<0.01	<0.01
CH ₄ ,g/kg ECM	14.1	15.4	14.8	15.7	13.7	0.29	0.02	0.01
CH ₄ ,g/kg DMI	20.2	20.7	21.1	21.5	21.3	<0.01	0.17	0.27

- ✓ Postponing the primary growth harvest, N efficiency improved and CH₄ per kg DMI increased.
- ✓ With progressing regrowth, feed efficiency decreased, N efficiency improved and CH₄ per kg ECM increased.
- ✓ Feeding third cut silage, feed efficiency increased, N efficiency and CH₄ per kg ECM decreased.

Grass Yield, kg DM/ha

2 & 3-cut harvesting systems 2-cut harvesting systems

4. Conclusions

- Feeding regrowth silages from 3-cut harvesting system promoted better dairy performance and higher digestibility compared to 2-cut harvesting systems, but lower grass yield.
- The practical implication of the results should be based on the individual aim and limitation of each particular farming situation.

Thank you for your attention!