Incorporating meat quality in sheep breeding programmes: potential of non-invasive technologies N. R. Lambe¹, N. Clelland¹, R. Roehe¹, K.A. McLean¹, J. Gordon¹, D. Evans² and L. Bunger¹ ¹Scotland's Rural College, Edinburgh, Scotland, UK ² Wm Morrisons Supermarkets PLC, Bradford, England, UK Leading the way in Agriculture and Rural Research, Education and Consulting ### Introduction - Genetic selection for lamb meat quality rare - Difficult / expensive/ time consuming to measure - Direct tests: - post-mortem on relatives, difficult to standardise - destructive expensive, not possible on-line - Predictive tests: - mainly post-mortem; often destructive / invasive / slow - Other potential hindrances: - Data feedback from abattoir; reliable traceability - On-line implementation | - | | | | | | |---------------|-------------------|-----------|-------------------------|---------------------|-------------------------------| | Species | Type | Country | Trait | Heritability | Reference | | Bos taurus | Taurine | USA | Marbling | | (Wheeler et al., 2001a) | | | | | LT SF1 | 0.22 ± 0.12 | | | | | | Juiciness | 0.09 ± 0.11 | | | | | | Flavour | 0.07 ± 0.11 | | | | | | IMF | 0.55 ± 0.14 | | | | Taurine | Australia | LT SF | | (Johnston et al., 2003) | | | | | Juiciness | 0.15 ± 0.06 | | | | | | Flavour | 0.05 ± 0.06 | | | | 7.1.3 | | MQ4 | 0.13 ± 0.06 | | | | Zebu ³ | Australia | LT SF | 0.31 ± 0.09 | | | | | | Juiciness | 0.20 ± 0.08^{4} | | | | | | Flavour | 0.23 ± 0.08 | | | | т | At1: | MQ4 | 0.32 ± 0.09 | (Dtt -1, 2002) | | | Taurine | Australia | IMF | | (Reverter et al., 2003) | | | Zebu | Australia | IMF | 0.39 ± 0.03^{5} | | | Gallus gallus | Broiler | France | Ultimate pH | 0.49 ± 0.11 | (Le Bihan-Duval et al., 1999) | | | | | Lightness | 0.75 ± 0.08 | | | | | | redness | 0.81 ± 0.04 | | | | | | yellowness | 0.64 ± 0.06 | | | | | | IMF | 0.08 ± 0.04 | (Zerehdaran et al.,
2004) | | Ovis aries | Merino | Australia | Meat pH | 0.27 ± 0.09 | (Fogarty et al., 2003) | | | | | Lightness | 0.14 ± 0.07 | | | | | | redness | 0.02 ± 0.06 | | | | | | yellowness | 0.04 ± 0.06 | | | | Composite | France | IMF | 0.22 | (Moreno et al., 2001) | | Sus scrofa | Large | Australia | Meat pH | 0.14 ± 0.04 | (Hermesch et al., 2000) | | | White/ | | Lightness | 0.29 ± 0.06 | | | | Landrace | | Drip Loss | 0.23 ± 0.05 | | | | | | IMF | 0.35 ± 0.06 | | | | Duroc/ | USA | Meat pH | 0.14 ± 0.08 | (Lo et al., 1991) | | | Landrace | | IMF | 0.52 ± 0.13 | | | | | | Cooking loss | 0.06 ± 0.06 | | | | | | Tenderness ⁶ | 0.17 ± 0.08 | | | | | | Off flavour | 0.03 ± 0.06 | | | | | | Consumer | | | | | | | acceptance | 0.34 ± 0.11 | | | | | | | | | ¹ Longissimus thoracis shear force; ² SE of heritability given as a range of 0.04–0.08 for the table see original reference; ³ Mixture of purebred zebu (e.g. Brahman) and breeds with some zebu ancestry; ⁴ SE of heritability given as a range of 0.07–0.09 for the table see original reference; ⁵ SE personal communication A. Reverter; ⁶ this is the objective measure of tenderness, for taste panel tenderness, $h^2 = 0.45 \pm 0.12$. ## Genetic control of meat quality From: J.P. Kerry and David Ledward: Improving the Sensory and Nutritional Quality of Fresh Meat Elsevier, 2009 #### Introduction - Few examples of commercial implementation - large scale progeny tests (NZ, Australia) - genomics - (SRUC "More taste, less waste" industry-led project) - Accurate phenotypes are key - rapid, routine, non-destructive, non-invasive, cost-effective - Imaging technologies? ## Non-invasive *post-mortem* predictors Visible and Near Infra-red spectroscopy (VISNIR) #### **Predicts:** - Colour - Cooking loss - Composition - IMF; fatty acids - Mechanical tenderness - Sensory traits #### Pros: - Fast, non-invasive, cost-effective, on-line - High R² for colour & composition #### Cons: - R² << 1 for technological/ sensory traits (Prieto et al., '09) - predictions complex ## Non-invasive *post-mortem* predictors Hyperspectral imaging Raman spectroscopy #### **Predict:** - Colour - Cooking loss - Mechanical tenderness - Composition; IMF - Fatty acid composition - Sensory traits #### Pros: - non-invasive, cost-effective - wealth of information - R² >0.8 for several traits¹ #### Cons: - practicality in plant - predictions complex - price? ## Non-invasive *post-mortem* predictors X-ray computed tomography (CT) #### **Predicts:** - IMF - beef (R²=0.71–0.76)¹ - pork (R² = 0.63-0.83)² - lamb (R²= 0.36)³ - fatty acid profile (R²=0.61–0.75)¹ - low accuracy for tenderness and sensory traits #### Pros: - fast; non-invasive; packaged meat - simultaneously predicts composition #### Cons: - $R^2 << 1$ - portability - price ¹Prieto et al., 2010 ²Font-i-Furnols et al., 2013 ³Lambe et al., 2009 ## Non-invasive *in-vivo* predictors #### Ultrasound - predicts IMF in pigs and beef cattle with mod-high accuracy (Newcom et al. '02; Aass et al., '06,'09) not successful in sheep ## Non-invasive *in-vivo* predictors X-ray computed tomography (CT) - CT tissue density distributions reflect IMF levels in live lambs (R² > 0.6) - Does not accurately predict mechanical tenderness or taste panel traits #### Previous research: lamb IMF vs MQ - Acceptable levels for IMF (loin) - > 2-3% grilled red meat / lamb1 - > 5% for "better than every day" eating quality² - SRUC slaughter lamb mean IMF: - Texel 1.4-1.6% - Texel X Mule 2.2% Concerns about fat reduction for eating quality #### Genetic control of CT-IMF - Data set from UK terminal sire breeding programme - ~2000 Texel ram lambs over 12 years - CT and performance records: 2-stage selection for carcass composition - Genetic analysis of CT-predicted IMF (ASReml): - heritability = 0.31 (s.e. 0.07) - genetic correlation with total carcass fat = 0.68 (s.e. 0.08) ## More taste, less waste ## Industry led research project with SRUC as lead research partner #### More taste, less waste project Terminal sire rams CT scanned **Mated to Mule ewes** N= 5000 crossbred lambs Tissue bank for 5000 DNA #### More taste, less waste project – WP1 ## (Multiplex) CT to predict meat quality in lamb meat cuts | Trait | Accuracy of prediction (R ²) | |----------------|--| | IMF | 0.36 | | Shear Force | 0.03 | | Texture (TP) | 0.08 | | Flavour (TP) | 0.09 | | Juiciness (TP) | 0.06 | | Liking (TP) | 0.10 | Best single CT predictor of all traits = % fat in sample (estimated by CT) | | C
con | | | | | |---------------|----------|------|------|------|-------| | IMF %
band | 1-2% | 2-3% | 3-4% | 4-5% | Total | | 1-2% | 5 | 17 | | | 22 | | 2-3% | 3 | 70 | 55 | | 128 | | 3-4% | | 34 | 83 | 1 | 118 | | 4-5% | | 2 | 23 | 1 | 26 | | >5% | | 1 | 2 | | 3 | | Total | 8 | 124 | 163 | 2 | 297 | 54% samples – band correct 63% samples with IMF<3% = < CT band 3-4% 25% samples with IMF >3% = < CT 3-4% ## IMF influences sensory traits Sensory traits significantly affected by IMF level: Assessed by chemical IMF extraction ## IMF influences sensory traits Sensory traits significantly affected by IMF level: Assessed by chemical IMF extraction OR predicted by CT | | CT-predicted IMF band | | | | | |-----------|-----------------------|------|------|---------|--| | | Adj-R ² | <3% | >3% | P value | | | | | | | | | | N | | 132 | 165 | | | | Texture | 7.0 | 5.55 | 5.85 | <0.001 | | | Flavour | 3.8 | 5.29 | 5.45 | < 0.001 | | | Juiciness | 4.4 | 4.98 | 5.15 | <0.001 | | | Liking | 5.7 | 5.08 | 5.28 | < 0.001 | | #### VISNIR to predict MQ in lamb meat cuts - Spectra from 500-2400 nm used in analysis - Median spectra of 10 replicates used - Unscrambler (v10.3) multivariate analysis software #### **VISNIR** to predict MQ in lamb meat cuts | | Unpac | kaged | Vacuum-packed | | | |----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--| | | R ² _{Cal} | R ² _{Val} | R ² _{Cal} | R ² _{Val} | | | IMF | 0.35 | 0.23 | 0.23 | 0.18 | | | ShF | 0.03 | 0.01 | 0.11 | 0.04 | | | Texture | 0.03 | 0.01 | 0.07 | 0.06 | | | Flavour | 0.02 | 0.01 | 0.05 | 0.02 | | | Juiciness | 0.01 | 0.01 | 0.01 | 0.003 | | | Overall liking | 0.008 | NA | 0.001 | NA | | ³R²_{Cal}=Coefficient of determintion of calibration. ⁴R²_{Val}=Coefficient of determination of validation. ## Discussion - More taste, less waste - Can we increase accuracies to predict IMF post-mortem? - VISNIR on fresh cut meat; analysis method - CT on whole carcasses - Project has produced: - high accuracy in-vivo phenotypes for IMF - moderate accuracy post-mortem phenotypes for IMF - data set to develop SNP-keys for genomic selection - A combination of in-vivo, post-mortem and genomic predictors could be used to develop a sustainable breeding programme including lamb meat quality traits #### General discussion - Clear breeding goals required - MQ and other traits multi-trait selection index - genomic selection + phenotyping - Need to overcome the barriers to practical implementation - and routine phenotyping - Move from R&D to commercial implementation Danish Meat Research Institute #### Acknowledgements Supportive funding of the "More taste, less waste" project came from Innovate UK SRUC receive financial support from the Scottish Government's Strategic Research Programme #### Thanks go to: - SRUC CT unit - Wm Morrison's Woodhead Brothers abattoir in Turriff - Ian Richardson and team, University of Bristol Leading the way in Agriculture and Rural Research, Education and Consulting