

Incorporating meat quality in sheep breeding programmes: potential of non-invasive technologies

N. R. Lambe¹, N. Clelland¹, R. Roehe¹, K.A. McLean¹, J. Gordon¹, D. Evans² and L. Bunger¹

¹Scotland's Rural College, Edinburgh, Scotland, UK

² Wm Morrisons Supermarkets PLC, Bradford, England, UK

Leading the way in Agriculture and Rural Research, Education and Consulting

Introduction

- Genetic selection for lamb meat quality rare
- Difficult / expensive/ time consuming to measure
 - Direct tests:
 - post-mortem on relatives, difficult to standardise
 - destructive expensive, not possible on-line
 - Predictive tests:
 - mainly post-mortem; often destructive / invasive / slow
- Other potential hindrances:
 - Data feedback from abattoir; reliable traceability
 - On-line implementation

-					
Species	Type	Country	Trait	Heritability	Reference
Bos taurus	Taurine	USA	Marbling		(Wheeler et al., 2001a)
			LT SF1	0.22 ± 0.12	
			Juiciness	0.09 ± 0.11	
			Flavour	0.07 ± 0.11	
			IMF	0.55 ± 0.14	
	Taurine	Australia	LT SF		(Johnston et al., 2003)
			Juiciness	0.15 ± 0.06	
			Flavour	0.05 ± 0.06	
	7.1.3		MQ4	0.13 ± 0.06	
	Zebu ³	Australia	LT SF	0.31 ± 0.09	
			Juiciness	0.20 ± 0.08^{4}	
			Flavour	0.23 ± 0.08	
	т	At1:	MQ4	0.32 ± 0.09	(Dtt -1, 2002)
	Taurine	Australia	IMF		(Reverter et al., 2003)
	Zebu	Australia	IMF	0.39 ± 0.03^{5}	
Gallus gallus	Broiler	France	Ultimate pH	0.49 ± 0.11	(Le Bihan-Duval et al., 1999)
			Lightness	0.75 ± 0.08	
			redness	0.81 ± 0.04	
			yellowness	0.64 ± 0.06	
			IMF	0.08 ± 0.04	(Zerehdaran et al., 2004)
Ovis aries	Merino	Australia	Meat pH	0.27 ± 0.09	(Fogarty et al., 2003)
			Lightness	0.14 ± 0.07	
			redness	0.02 ± 0.06	
			yellowness	0.04 ± 0.06	
	Composite	France	IMF	0.22	(Moreno et al., 2001)
Sus scrofa	Large	Australia	Meat pH	0.14 ± 0.04	(Hermesch et al., 2000)
	White/		Lightness	0.29 ± 0.06	
	Landrace		Drip Loss	0.23 ± 0.05	
			IMF	0.35 ± 0.06	
	Duroc/	USA	Meat pH	0.14 ± 0.08	(Lo et al., 1991)
	Landrace		IMF	0.52 ± 0.13	
			Cooking loss	0.06 ± 0.06	
			Tenderness ⁶	0.17 ± 0.08	
			Off flavour	0.03 ± 0.06	
			Consumer		
			acceptance	0.34 ± 0.11	

¹ Longissimus thoracis shear force; ² SE of heritability given as a range of 0.04–0.08 for the table see original reference; ³ Mixture of purebred zebu (e.g. Brahman) and breeds with some zebu ancestry; ⁴ SE of heritability given as a range of 0.07–0.09 for the table see original reference; ⁵ SE personal communication A. Reverter; ⁶ this is the objective measure of tenderness, for taste panel tenderness, $h^2 = 0.45 \pm 0.12$.

Genetic control of meat quality

From: J.P. Kerry and David Ledward: Improving the Sensory and Nutritional Quality of Fresh Meat Elsevier, 2009

Introduction

- Few examples of commercial implementation
 - large scale progeny tests (NZ, Australia)
 - genomics
 - (SRUC "More taste, less waste" industry-led project)

- Accurate phenotypes are key
 - rapid, routine, non-destructive, non-invasive, cost-effective
 - Imaging technologies?

Non-invasive *post-mortem* predictors

 Visible and Near Infra-red spectroscopy (VISNIR)

Predicts:

- Colour
- Cooking loss
- Composition
- IMF; fatty acids
- Mechanical tenderness
- Sensory traits

Pros:

- Fast, non-invasive, cost-effective, on-line
- High R² for colour & composition

Cons:

- R² << 1 for technological/ sensory traits (Prieto et al., '09)
- predictions complex

Non-invasive *post-mortem* predictors

Hyperspectral imaging

Raman spectroscopy

Predict:

- Colour
- Cooking loss
- Mechanical tenderness
- Composition; IMF
- Fatty acid composition
- Sensory traits

Pros:

- non-invasive, cost-effective
- wealth of information
- R² >0.8 for several traits¹

Cons:

- practicality in plant
- predictions complex
- price?

Non-invasive *post-mortem* predictors

 X-ray computed tomography (CT)

Predicts:

- IMF
 - beef (R²=0.71–0.76)¹
 - pork (R² = 0.63-0.83)²
 - lamb (R²= 0.36)³
- fatty acid profile (R²=0.61–0.75)¹
- low accuracy for tenderness and sensory traits

Pros:

- fast; non-invasive; packaged meat
- simultaneously predicts composition

Cons:

- $R^2 << 1$
- portability
- price

¹Prieto et al., 2010 ²Font-i-Furnols et al., 2013

³Lambe et al., 2009

Non-invasive *in-vivo* predictors

Ultrasound

- predicts IMF in pigs and beef cattle with mod-high accuracy (Newcom et al. '02; Aass et al., '06,'09)

not successful in sheep

Non-invasive *in-vivo* predictors

X-ray computed tomography (CT)

- CT tissue density distributions reflect IMF levels in live lambs (R² > 0.6)
- Does not accurately predict mechanical tenderness or taste panel traits

Previous research: lamb IMF vs MQ

- Acceptable levels for IMF (loin)
 - > 2-3% grilled red meat / lamb1
 - > 5% for "better than every day" eating quality²
 - SRUC slaughter lamb mean IMF:
 - Texel 1.4-1.6%
 - Texel X Mule 2.2%

Concerns about fat reduction for eating quality

Genetic control of CT-IMF

- Data set from UK terminal sire breeding programme
 - ~2000 Texel ram lambs over 12 years
 - CT and performance records:
 2-stage selection for carcass composition
- Genetic analysis of CT-predicted IMF (ASReml):
 - heritability = 0.31 (s.e. 0.07)
 - genetic correlation with total carcass fat = 0.68 (s.e. 0.08)

More taste, less waste

Industry led research project with SRUC as lead research partner

More taste, less waste project

Terminal sire rams
CT scanned

Mated to Mule ewes

N= 5000 crossbred lambs

Tissue bank for 5000 DNA

More taste, less waste project – WP1

(Multiplex) CT to predict meat quality in lamb meat cuts

Trait	Accuracy of prediction (R ²)
IMF	0.36
Shear Force	0.03
Texture (TP)	0.08
Flavour (TP)	0.09
Juiciness (TP)	0.06
Liking (TP)	0.10

Best single CT predictor of all traits = % fat in sample (estimated by CT)

	C con				
IMF % band	1-2%	2-3%	3-4%	4-5%	Total
1-2%	5	17			22
2-3%	3	70	55		128
3-4%		34	83	1	118
4-5%		2	23	1	26
>5%		1	2		3
Total	8	124	163	2	297

54% samples – band correct

63% samples with IMF<3% = < CT band 3-4%

25% samples with IMF >3% = < CT 3-4%

IMF influences sensory traits

Sensory traits significantly affected by IMF level:

Assessed by chemical IMF extraction

IMF influences sensory traits

Sensory traits significantly affected by IMF level:

Assessed by chemical IMF extraction OR predicted by CT

	CT-predicted IMF band				
	Adj-R ²	<3%	>3%	P value	
N		132	165		
Texture	7.0	5.55	5.85	<0.001	
Flavour	3.8	5.29	5.45	< 0.001	
Juiciness	4.4	4.98	5.15	<0.001	
Liking	5.7	5.08	5.28	< 0.001	

VISNIR to predict MQ in lamb meat cuts

- Spectra from 500-2400 nm used in analysis
- Median spectra of 10 replicates used
- Unscrambler (v10.3) multivariate analysis software

VISNIR to predict MQ in lamb meat cuts

	Unpac	kaged	Vacuum-packed		
	R ² _{Cal}	R ² _{Val}	R ² _{Cal}	R ² _{Val}	
IMF	0.35	0.23	0.23	0.18	
ShF	0.03	0.01	0.11	0.04	
Texture	0.03	0.01	0.07	0.06	
Flavour	0.02	0.01	0.05	0.02	
Juiciness	0.01	0.01	0.01	0.003	
Overall liking	0.008	NA	0.001	NA	

³R²_{Cal}=Coefficient of determintion of calibration.

⁴R²_{Val}=Coefficient of determination of validation.

Discussion - More taste, less waste

- Can we increase accuracies to predict IMF post-mortem?
 - VISNIR on fresh cut meat; analysis method
 - CT on whole carcasses
- Project has produced:
 - high accuracy in-vivo phenotypes for IMF
 - moderate accuracy post-mortem phenotypes for IMF
 - data set to develop SNP-keys for genomic selection
- A combination of in-vivo, post-mortem and genomic predictors could be used to develop a sustainable breeding programme including lamb meat quality traits

General discussion

- Clear breeding goals required
 - MQ and other traits multi-trait selection index
 - genomic selection + phenotyping
- Need to overcome the barriers to practical implementation
 - and routine phenotyping
- Move from R&D to commercial implementation

Danish Meat Research Institute

Acknowledgements

Supportive funding of the "More taste, less waste" project came from Innovate UK

SRUC receive financial support from the Scottish Government's Strategic Research Programme

Thanks go to:

- SRUC CT unit
- Wm Morrison's Woodhead Brothers abattoir in Turriff
- Ian Richardson and team, University of Bristol

Leading the way in Agriculture and Rural Research, Education and Consulting