

# OPTIMISING PH / TEMPERATURE DECLINE IMPLEMENTATION OF SMART STIMULATION

G. Williamson<sup>1</sup>, J. Birnie<sup>1</sup>, R. Law<sup>1</sup>, S. Leitch<sup>1</sup>, D. Devlin<sup>2</sup> and L. Farmer<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> Dunbia, Dungannon, Co. Tyrone, Northern Ireland, BT701NJ.

<sup>&</sup>lt;sup>2</sup> AFBI, 18A Newforge Lane, Belfast, Co. Antrim, Northern Ireland, BT95PX.

#### "You are what you eat"



Consumer demands consistency...

"We are what we process"?





#### Background





- The two main determinants of meat quality post slaughter are the rate of pH fall and the rate of muscle chilling.
- These two variables are not independent as temperature will affect pH fall. However, pH fall can be manipulated independently by the level of electrical inputs applied to the carcass



#### Objectives



- ❖ Evaluate four different types of electrical stimulation on the variation in carcass quality; defined by ultimate pH, of animals post a 48 hour chilling period.
  - Establish the effect of electrical stimulation on:
    - Rate of pH decline,
      - Effect on pH / temperature decline
    - Ultimate pH
    - Drip and cooking loss
    - Meat tenderness
- ❖ Evaluate the correlation between Warner-Bratzler Shear Force and MIRINZ tenderometer in evaluating meat tenderness.



#### **Experimental Design**



120 animals were used in the study.

#### Four Treatments

- 1. No electrical stimulation (negative control)
- 2. Low voltage electrical stimulation at the hide puller
- 3. No stimulation at hide puller and low voltage electrical stimulation at end of line
- 4. No stimulation at hide puller and medium voltage electrical stimulation at end of line



#### **Experimental Design**



#### Chill Settings

- Carcasses entering the chill were not trimmed after being weighed.
- All chills were on a pre-setting; 10°C for 10 hours followed by 0°C for a further 38 hours.
- Post chilling, all sides were de-boned and loins were divided into 7 segments
- Once samples were aged for the designated time, they were placed in a deep freeze until further processing.



#### Measurements



- Pre-slaughter
  - Nutrition, finishing group size and housing type.
- Post slaughter
  - Carcass weight, carcass grade (conformation score & fat classification), sex, age, breed and time of kill.
- pH and temperature measurements were collected at 1, 2, 5, 8 and 24 hours after slaughter.
- Steaks were thawed at 2-5 °C until internal temperature reached 2-5 °C.
- Drip loss before cooking and cooking loss was measured.
- Once samples were cooked they were then analysed for tenderness using Warner-Bratzler Shear Force and MIRINZ Tenderometer.

#### **Statistical Analysis**



- Data were analysed by linear mixed models using the Residual Maximum Likelihood (REML) procedure in GenStat.
- The model fitted fixed effects; ageing period, loin segment and Treatment.
- Random factors included animal age, carcass weight, grade, run, carcass side and kill date.
- All interactions were included within the model.
- Regression analysis was also conducted to evaluate the correlation between tenderness assessment methods.

## pH Decline





#### pH Decline









#### pH against Temperature Decline





#### **WBSF** Results





#### MIRINZ Results





### Thaw & Cooking Loss



| Electrical Stimulation Treatment | Cooking Loss % | Thaw Loss % |
|----------------------------------|----------------|-------------|
| LV                               | 28.70          | 4.73        |
| LVES HP                          | 27.65          | 4.36        |
| MV                               | 28.91          | 4.78        |
| NONE                             | 28.48          | 4.74        |

Drip & Thaw Loss- P= 0.086

#### Conclusions



- Potential for improved stimulation methods to be introduced in the future
- Electrical stimulation has been shown to improve the consistency of carcasses leaving the chill
- Tenderness measurements reflected the on-set of heat shortening in the end of line stimulated carcasses.
- Tenderometer vs WBSF analysis- strong correlation between the two instruments.
- Cooking and drip loss also increased with end of line stimulation



## Thank you for your attention Any Questions?

