# Lipid mobilization, immune system and vitamin E in transition cows: an old story revisited

Ioannis Politis, Georgios Theodorou



### **Transition Period**

It starts from week 3 prepartum until week 3 postpartum

#### Health Problems

Three main categories of metabolic problems

- 1. Energy metabolism (fatty liver, ketosis, acidosis)
- 2. Mineral metabolism (milk fever, subclinical hypocalcemia)
- 3. Immune system-related (mastitis, retained placenta,

metritis)



#### Transition Period: The physiological basis

 Negative energy balance (imbalance between energy consumed and energy needed)

Mobilization of body fatty reserves

Increase of circulating NEFA and BHBA

### NEFA – BHBA during transition period (1)

| Time of sampling                                                                      | NEFA (mmol/L)              | BHBA<br>(mmol/L)           | α –T<br>(μmol/L)           | Ratio α-T/TC<br>(x 10³)    |  |
|---------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
| Dry off                                                                               | 0.155° ± 0.017             | 0.394° ± 0.024             | 8.900° ± 0.206             | 2.422ª ± 0.061             |  |
| Calving                                                                               | 0.511 <sup>b</sup> ± 0.017 | 0.512 <sup>b</sup> ± 0.024 | 4.372 <sup>b</sup> ± 0.206 | 1.863 <sup>b</sup> ± 0.062 |  |
| 30 d<br>postpartum                                                                    | 0.255° ± 0.017             | 0.620° ± 0.024             | 9.062ª ± 0.212             | 2.361ª ± 0.063             |  |
| a, b, c : Means within the same column followed by different letters differ at P<0.05 |                            |                            |                            |                            |  |

### NEFA – BHBA during transition period

Ratio α-T/TC (x103)

NEFA, BHBA (mmol/L)

### NEFA – BHBA during transition period (2)

Correlations between NEFA, BHBA,  $\alpha$ -T and the ratio of  $\alpha$ -T to total cholesterol (TC) during the periparturient period

|                 |        |     | NEFA | внва   | α-Τ          | α-T/TC |
|-----------------|--------|-----|------|--------|--------------|--------|
|                 | NEFA   | Rho | 1    | 0.114  | -0.169       | -0.002 |
|                 |        | Р   | -    | ns     | ns (P=0.057) | ns     |
| <b>u_</b>       | ВНВА   | Rho |      | 1      | -0.370       | -0.352 |
| Dry off         |        | Р   |      | -      | ***          | ***    |
| Dry             | α-T    | Rho |      |        | 1            | 0.348  |
|                 |        | Р   |      |        | -            | ***    |
|                 | α-T/TC | Rho |      |        |              | 1      |
|                 |        | Р   |      |        |              | -      |
|                 |        |     |      |        |              |        |
|                 | NEFA   | Rho | 1    | -0.030 | -0.300       | 0.028  |
| £               |        | Р   | -    | ns     | ***          | 113    |
| rtu             | BHBA   | Rho |      | 1      | -0.104       | -0.188 |
| 30 d postpartum |        | Р   |      | -      | ns           | de .   |
|                 | α-Τ    | Rho |      |        | 1            | 0.388  |
|                 |        | Р   |      |        | -            | ***    |
|                 | α-T/TC | Rho |      |        |              | 1      |
|                 |        | Р   |      |        |              | -      |

<sup>\*</sup> Correlation is significant at P < 0.05 (2-tailed).

ns: not significant

<sup>\*\*\*</sup> Correlation is significant at P< 0.001 (2-tailed).



### Adipose Tissue: Fundamental Facts

- Central role in controlling energy balance
- "Storage area" when energy balance is positive
- "Mobilization" of fatty acids when energy balance is negative



### Adipose Tissue – Obesity



- Ectopic lipid deposition
- Reduced fatty acid oxidation
- "Low grade inflammation"

Insulin Resistance

### Adipose Tissue: a metabolic active organ?



PAI-1 autocrine/paracrine feedback loop to limit adipose tissue expansion

### Structure – Cell Type

- Adipocytes
- Fibroblasts
- Immunocompetent cells (monocytes, lymphocytes)
- Well-developed vasculature



## Interaction between adipose tissue and immune system



PAI-1 autocrine/paracrine feedback loop to limit adipose tissue expansion

#### **EXPERIMENT**

#### **OBJECTIVES**

- Are FFAs the metabolic "mediators" of inflammation towards ovine phagocytes?
- Does α-tocopherol block the activation initiated by FFAs?



### Methodology (I)

- 10 Dairy sheep (Chios Breed)
  - 4 samples during the dry period per animal
- Isolation of blood monocytes and neutrophils
- Isolated cells were cultured with various FAs (C14, C16, C18)
   with or without α-tocopherol
- Various forms of PA activity in monocytes and neutrophils

### Methodology (II)



### Effect of various fatty acids on u-PA related parameters of activated sheep monocytes.

| Fatty acid (μM)   | Membrane bound u-PA<br>ΔA/h/10 <sup>6</sup> cells | Free u-PA binding sites<br>ΔA/h/10 <sup>6</sup> cells |
|-------------------|---------------------------------------------------|-------------------------------------------------------|
| Control           | 0.26a œ0.03                                       | 0.62ª œ0.08                                           |
| Myristic (125)    | 0.28a œ0.03                                       | 0.60° œ0.08                                           |
| Myristic (250)    | 0.34 <sup>b</sup> œ0.03                           | 0.75 <sup>b</sup> œ0.08                               |
| Palmitic (125)    | 0.29° œ0.03                                       | 0.60° œ0.08                                           |
| Palmitic (250)    | 0.42° œ0.03                                       | 0.88° œ0.08                                           |
| Palmitoleic (125) | 0.29° œ0.03                                       | 0.64° œ0.08                                           |
| Palmitoleic (250) | 0.42° œ0.03                                       | 0.87° œ0.08                                           |
| Stearic (125)     | 0.40° œ0.03                                       | 0.85° œ0.08                                           |
| Stearic (250)     | 0.60 <sup>d</sup> ± 0.03                          | 1.05 <sup>d</sup> ± 0.08                              |
| Oleic (125)       | 0.42° œ0.03                                       | 0.87° œ0.08                                           |
| Oleic (250)       | 0.61 <sup>d</sup> ± 0.03                          | 1.05 <sup>d</sup> ± 0.08                              |

Means within the same column with different superscripts are significantly different (P<0.05)

### Effect of various fatty acids on u-PA related parameters of activated sheep neutrophils.

| Fatty acid (μM)   | Membrane bound u-PA<br>ΔA/h/10 <sup>6</sup> cells | Free u-PA binding sites<br>ΔA/h/10 <sup>6</sup> cells |
|-------------------|---------------------------------------------------|-------------------------------------------------------|
| Control           | 0.52 <sup>a</sup> ± 0.07                          | 0.84 <sup>a</sup> ± 0.10                              |
| Myristic (125)    | 0.55° ± 0.07                                      | $0.77^{a} \pm 0.10$                                   |
| Myristic (250)    | 0.53 <sup>a</sup> ± 0.07                          | 0.86a ± 0.10                                          |
| Palmitic (125)    | 0.58° ± 0.07                                      | $0.75^{a} \pm 0.10$                                   |
| Palmitic (250)    | 0.49a ± 0.07                                      | 0.88a ± 0.10                                          |
| Palmitoleic (125) | 0.61 <sup>a</sup> ± 0.07                          | $0.90^{a} \pm 0.10$                                   |
| Palmitoleic (250) | 0.49° œ0.07                                       | 0.79° œ0.10                                           |
| Stearic (125)     | 0.60° œ0.07                                       | 0.87° œ0.10                                           |
| Stearic (250)     | 0.75 <sup>b</sup> ± 0.07                          | 1.22 <sup>b</sup> ± 0.10                              |
| Oleic (125)       | 0.63° œ0.07                                       | 0.76° œ0.10                                           |
| Oleic (250)       | 0.77 <sup>b</sup> ± 0.07                          | 1.25 <sup>b</sup> ± 0.10                              |

Means within the same column with different superscripts are significantly different (P<0.05)

Effect of  $\alpha$ -tocopherol ( $\alpha$ -T) on expression of PA-related genes in activated ovine monocytes cultured in the presence of stearic (ST) or oleic (OL) acids.

Effect of  $\alpha$ -tocopherol ( $\alpha$ -T) on expression of PA-related genes in activated ovine neutrophils cultured in the presence of stearic (ST) or oleic (OL) acids.

Effect of  $\alpha$ -tocopherol ( $\alpha$ -T) on expression of related genes in activated ovine monocytes cultured in the presence of stearic (ST) or oleic (OL) acids.



Effect of  $\alpha$ -tocopherol ( $\alpha$ -T) on expression of related genes in activated ovine neutrophils cultured in the presence of stearic (ST) or oleic (OL) acids.



Effect of  $\alpha$ -tocopherol ( $\alpha$ -T) on expression of IL-10 in activated ovine monocytes cultured in the presence of stearic (ST) or oleic (OL) acids.



#### **CONCLUSIONS**

- FFAs activate ovine phagocytic cells
- Activation of monocytes > neutrophils
- C<sub>18</sub>>C<sub>16</sub>>C<sub>14</sub>
- NS difference between saturated and unsaturated FFAs
- FFAs act in a pro-inflammatory manner
- Vit E does not block the inflammatory effect

Vitamin E and immune system: Lessons from in vivo studies



### Vitamin E enhances the ability of neutrophils to kill ingested bacteria



Hogan et al. (1992) J Dairy Sc. 75:399-405

### Vitamin E enhances oxidative burst by neutrophils



Politis et al. (1995) Am J Vet Sci 56:179-184

### Vitamin E favors rapid recruitment of neutrophils in the mammary gland



#### Vitamin E upregulates u-PA system

\* P<0.05



u-PAR Northern blot week 1 postpartum

Politis et al. (2001) AJVR 62:1934-1938

### Vitamin E – Immune system

Vitamin E enhances (restores)

proper immune function

during the transition period

### Vitamin E levels – Type of diet

| Type of diet | Vitamin E (IU/day) |
|--------------|--------------------|
| Lactating    |                    |
| Hay          | 400                |
| Silage       | 1500               |
| Pasture      | 2500               |
| Dry          |                    |
| Hay          | 200                |
| Pasture      | 1800               |

Weiss et al. (1998)

### Suggested levels of Vitamin E supplementation for lactating and dry cows

Stage in lactation cycle

Vitamin E (IU/day/cow)

Conditional or opposite effects must be repeated before changing Vitamin E recommendations

### EXTRA SLIDES

### Veterinary-treated cases of clinical mastitis relative to blood $\alpha$ -tocopherol levels at dry-off and calving in dairy cows.

| Period                                | α-tocopherol<br>(μg/ml)        | Mean | Median | P10 | P90 | Number of cows |          |               |
|---------------------------------------|--------------------------------|------|--------|-----|-----|----------------|----------|---------------|
|                                       |                                |      |        |     |     | Healthy        | Mastitic | χ²<br>p-value |
|                                       | > 6.25                         | 7.2  | 7.0    | 6.3 | 8.5 | 30             | 4        | 1.47          |
| Dry-off                               | 4.25-6.25                      | 5.1  | 4.9    | 4.3 | 6.2 | 63             | 14       | 0.48          |
|                                       | < 4.25                         | 3.6  | 3.7    | 2.8 | 4.1 | 27             | 8        |               |
|                                       |                                |      |        |     |     |                |          |               |
|                                       | > 3                            | 4.0  | 3.8    | 3.2 | 5.2 | 37             | 4        | 19.70         |
| Calving                               | 2-3                            | 2.5  | 2.6    | 2.0 | 3.0 | 57             | 5        | P<0.001       |
| P10: 10 <sup>th</sup> percentile; P90 | ): 90 <sup>th</sup> percentile | 1.3  | 1.4    | 0.6 | 1.9 | 26             | 17       |               |

Politis et al. (2012) J. Dairy Sci. 95:7331-7335

### Reactive oxygen metabolites (ROM) relative to $\alpha$ -tocopherol levels in blood serum at dry-off and calving in dairy cows

| Period  | α-tocopherol<br>groups (μg/ml) | ROM at dry-off (U/ml)     | ROM at calving<br>(U/ml) | P within rows |
|---------|--------------------------------|---------------------------|--------------------------|---------------|
|         | > 6.25                         | 40.8 <sup>a</sup> ± 3.2   | 49.6° ± 3.2              | 0.754         |
| Dry-off | 4.25-6.25                      | 53.3 <sup>ab</sup> ± 2.09 | 61.1 <sup>b</sup> ± 2.1  | 0.137         |
|         | < 4.25                         | 56.2 <sup>b</sup> ± 3.1   | $64.4^{b} \pm 3.1$       | 0.960         |
| Mean    |                                | 50.0 ± 1.6                | 58.4 ± 1.6               | <0.001        |
|         |                                |                           |                          |               |
|         | > 3                            | 41.5 <sup>a</sup> ± 2.9   | 53.0 ± 2.9               | 0.078         |
| Calving | 2-3                            | 51.5 <sup>ab</sup> ± 2.5  | 61.2 ± 2.5               | 0.106         |
|         | < 2                            | 58.3 <sup>b</sup> ± 2.6   | 62.0 ± 2.6               | 1.000         |
| Mean    |                                | 50.4 ± 1.5                | 58.7 ± 1.5               | <0.001        |

 $<sup>^{</sup>a,b}$ Means within the same column and period followed by different letters differ at P < 0.05

### Thiol groups (SH) relative to $\alpha$ -tocopherol levels in blood serum at dry-off and calving in dairy cows

| Period  | α-tocopherol<br>groups (μg/ml) | SH at dry-off<br>(µmol/l) | SH at calving<br>(µmol/l) | Probability within rows (P value) |
|---------|--------------------------------|---------------------------|---------------------------|-----------------------------------|
|         | > 6.25                         | 319 <sup>a</sup> ± 26     | 417ª ± 26                 | 0.137                             |
| Dry-off | 4.25-6.25                      | 378 <sup>ab</sup> ± 17    | 445 <sup>ab</sup> ± 17    | 0.116                             |
|         | < 4.25                         | 402 <sup>b</sup> ± 25     | 513 <sup>b</sup> ± 26     | 0.039                             |
| Mean    |                                | 366 ± 14                  | 458 ± 14                  | <0.001                            |
|         |                                |                           |                           |                                   |
| Calving | > 3                            | 345 ± 24                  | 428 ± 24                  | 0.233                             |
|         | 2-3                            | 364 ± 21                  | 440 ± 21                  | 0.160                             |
|         | < 2                            | 398 ± 21                  | 492 ± 22                  | 0.036                             |
| Mean    |                                | 369 ± 13                  | 453 ± 13                  | <0.001                            |

 $<sup>^{\</sup>rm a,b}$ Means within the same column and period followed by different letters differ at P < 0.05