

The effect of linseed expeller supplementation on growth, carcass traits and meat colour of finishing gilts

E.García-Hernandez, M.Tor, D.Villalba, J. Álvarez-Rodríguez.

Department of Animal Science

- □ Pork is the most consumed meat in the world, and its fatty acid content and composition is directly influenced by diet.
- ☐ The idea of modifying the fatty acid composition of pork to make it more healthful.
- □ Consumers relation the perception of meat quality with visual apperance characteristics:
 - Subcutaneous fat content
 - ☐ Drip loss
 - □ Colour.....

LINSEED EXPELLER

	Linseed expeller
EM (kcal/kg)	2970
Crude Protein(%)	32.4
SFA (% total of fatty acids)	8.7
MUFA (% total of fatty acids)	18.6
ω -6(% total of fatty acids)	17.9
ω -3 (% total of fatty acids)	54.8
balance ω-6 / AGPI ω-3	0.3

 Balance between level of inclusion and length of supplementation period

• Effect of linseed meal on c18:3 (g/Kg) in pigs slaughtered at 115kg of BW

Item	O Flaxseed level in diet g/ Kg	5 Flaxseed level in diet g/ Kg	10 Flaxseed level in diet g/ Kg	15 Flaxseed level in diet g/ Kg
α-linolenic				
Backfat	11.1	21.7	34.4	47.4
Loin	5.0	6.4	9.3	10.1

Eastwood et al.2009

OBJECTIVES

 To Evaluate the effect of linseed expeller supplementation on carcass traits, meat colour and fatty acids profile of finishing gilts.

MATERIAL AND METHODS **Animal**

82 crossbred gilts (Landrace--Large- White x Pietrain)

Age (168± 3 days) Initial Body-Weight (92.5±2kg)

Gilts were housed in 4 pens (20-21pigs each) based

on initial BW

MATERIAL AND METHODS Experimental diet

- There were 2 treatments:
 - 1) Growing-finishing feed (control) ad libitum (2365 kcal EN/kg, 1.0% Lys, vit E 29 mg/kg)
 - 2) Growing-finishing feed *ad libitum* with a supplement of linseed expeller top-dressing (supplementation) + 0,5 kg/day of supplement (level of inclusion 15% of the expected daily intake)

MATERIAL AND METHODS Slaughtering and carcass quality traits

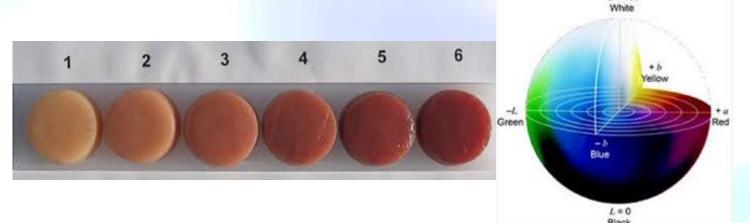
- In vivo:
 - Final Body-Weight (same day, before departure to slaughter)
 - Daily gain
- ✓ 24h fasting time
- √ 1,5 h lairage time
- Post-mortem:
 - Carcass Weight
 - Back-fat depth using an on-line ultrasound automatic scanner (Autofom):
 - 1. At the 3th-4th last rib area
 - 2. At the last lumbar vertebrae


Half of the gilts were sampled for loin evaluation:

400g of caudal Longissimus thoracis muscle

MATERIAL AND METHODS Technogical and chemical composition of meat

- pH: 45min and 24h post mortem
- WBSF: cooked at internal temp 70°C (sample 30x10mm) with a texturer analyser. TX2.
- Cooking loss
- IMF
- Crude protein


MATERIAL AND METHODS Map Storage and colour

1-cm slices were stored in modified atmosphere package (MAP, 70% O₂, 30% CO₂) at 4 ° C for colour assessment:

1. Colour attributes (CIELab) with a chromameter (Minolta Camera, Japan).

2. Japanese Colour Standard (Visual evaluation): Two non-related people scored meat separately.

At days 1, 4, 8 and 12.

MATERIAL AND METHODS Intramuscular fatty acids

- Mesure %IMF (intramuscular fatty acids) with Soxhlet extractor:
 4g of lyophilized and homogenized meat.
- Fatty acid profile: Direct transesterification with boron trifluoride 20% in methanol (100mg sample) and quantification by GC

MATERIAL AND METHODS Statistical analysis

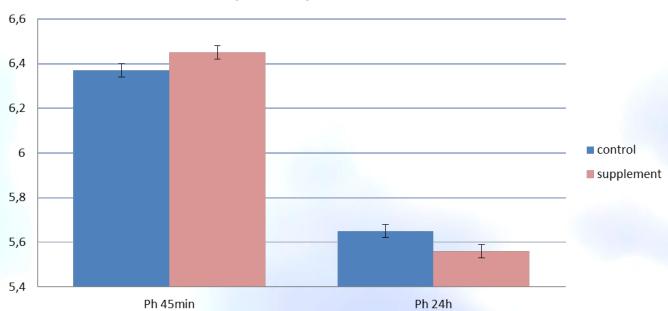
- Data were analysed using the JMP Pro 11 Statistical software (SAS. USA).
- •Carcass parameters, pH, IMF composition were analysed with general linear model (GLM procedure) with treatment as fixed effect.
- •Colour attributes were analysed with a linear mixed model including as well the effect of storage day.
- •The level of significance was set at 0,05. assessed using the Tukey test.

RESULTS AND DISCUSSION Growth data

	Control	Supplement	P value
Final weight (kg)	109.8	107.7	0.48
Average daily gain (g)	689	739	0.42
Carcass weight (kg)	75.5	83.1	0.45
Backfat depth 3 rd -4 th last rib (mm)	22.8	24.6	<0.05
Backfat depth last lumbar vertebrae (mm)	10.9	12.5	<0.05

The final weight, daily gain and carcass weight did not differ between groups.

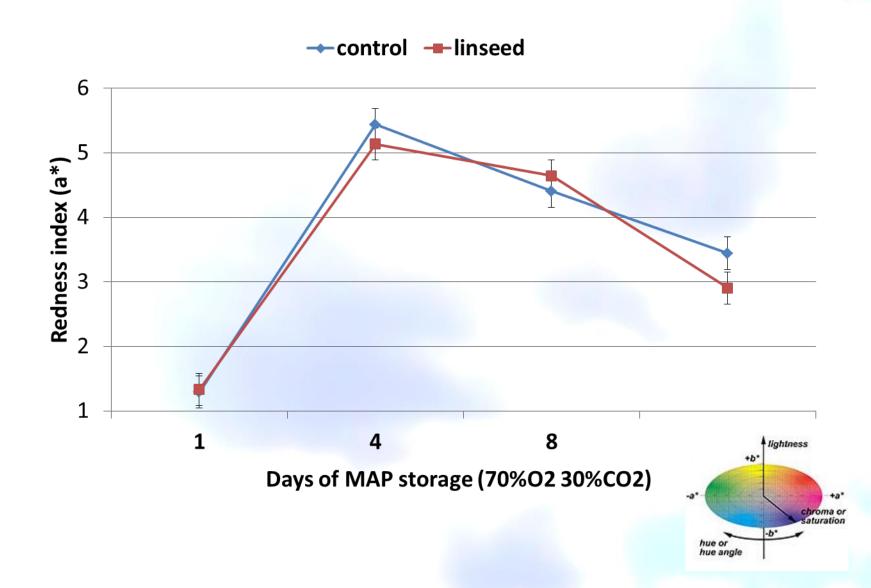
Linseed supplement increased backfat depth


RESULTS AND DISCUSSION Meat Quality traits

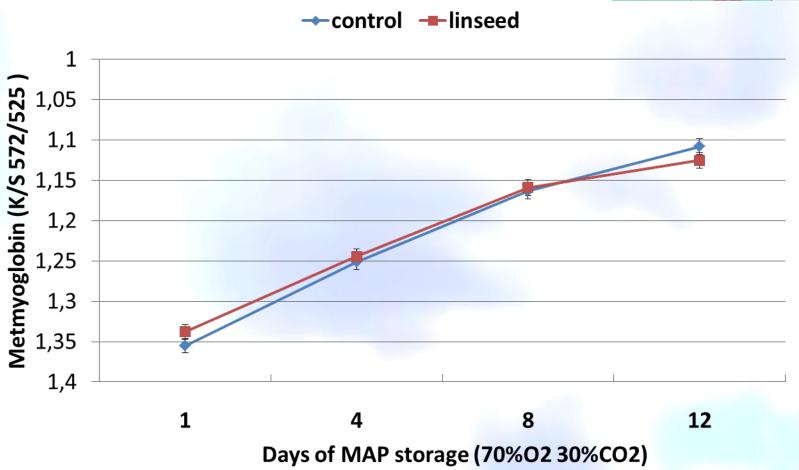
	Control	Supplement	P-value
WB Shear force (kg)	5.73±0.16	5.69±0.18	0.99
Cooking loss (%)	17.0±0.97	16.3±1.15	0.63
Moisture (%)	72.9±0.36	72.9±0.42	0.93
Crude protein (%)	21.5±0.26	21.8±0.30	0.48
IMF (%)	2.33œ.17	2.69œ.36	0.32

The WB Shear force, cooking loss, moisture, crude protein and did not differ between groups.

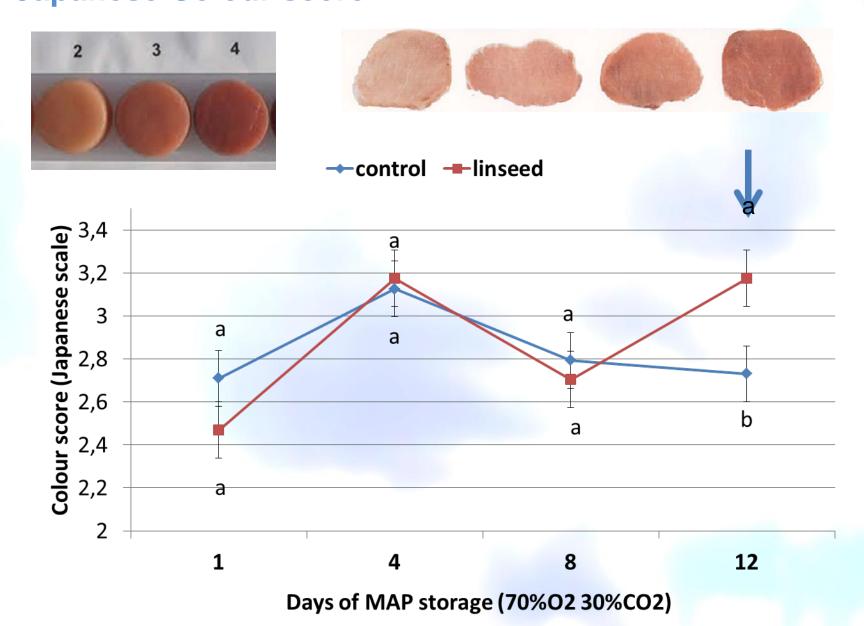
RESULTS AND DISCUSSION pH


Development pH at 45min and 24h

There are no differences in pH between groups.

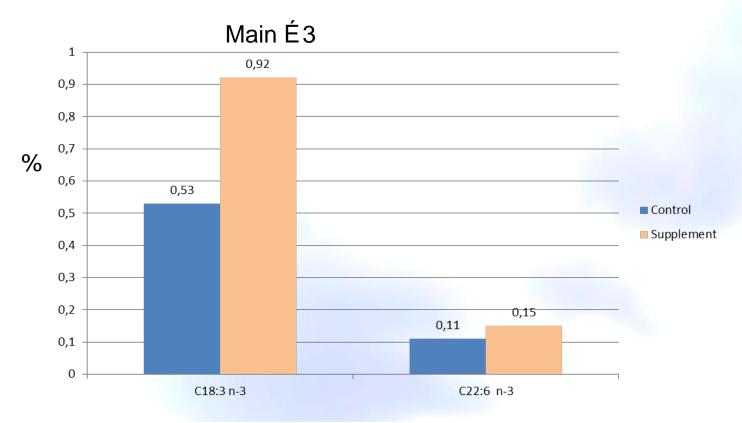

	pH 45min	pH 24h	P value
Control	6.37±0.07	5.65±0.03	0.48
Supplement	6.45±0.08	5.56±0.03	0.19

RESULTS AND DISCUSSION Colour score



RESULTS AND DISCUSSION Map Storage

RESULTS AND DISCUSSION Japanese Colour score


RESULTS AND DISCUSSION Profile fatty acids

Item	Control	Linseed Supplementation	P-value
SFA (%)	26.09±0.21	25.39±0.23	0.04*
MUFA (%)	45.77œ.69	44.53œ.84	0.26
PUFA (%)	17.18œ.79	19.37œ1.02	0.09
Omega 6 (%)	12.57œ9.49	13.72œ9.62	0.15
Omega 3(%)	0.77±0.04	1.37±0.10	<0.001*

There were differences in SFA and ©-3 contents

RESULTS AND DISCUSSION Profile fatty acids

	Control	Linseed	P value
		Supplementation	
C18:3 n-3	0.53±0.02	0.92±0.07	<0.001*
C22:6 n-3	0.11±0.01	0.15±0.01	0.023*

CONCLUSIONS

A top-dressed linseed supplement (15% of diet inclusion during the last 21 days of fattening):

- Increased carcass adiposity without negatively affecting the muscle pH, shear force, cooking loss or meat colour.
- Did not affect visual appearance of loin slices during at least 8 days of display storage.
- Did not increase IMF significantly but it modified the FA composition by increasing PUFA n-3 content.

ONGOING RESEARCH

Technological quality traits and PUFA n-3 content is maintained in cooked and MAP stored meat from pigs fed n-3 rich sources? → studies to assess the effect of COOking and Storage in MAP on the fatty acid profile

AKNOWLEDGEMENTS

Research and Development Projects: IDI 2014-2028

