Processing automatic tracking data to identify interactions between Holstein-Friesian cows

Shivateja Medisetti¹, Borbala Foris¹, Silke Trißl¹, Jan Langbein², Nina Melzer¹

¹ Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany ² Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany

LEIBNIZ INSTITUTE FOR FARM ANIMAL BIOLOGY

Motivation

Detecting association and interaction in groups of cows

Association (Closeness, Avoidance)

- Undirected
- A is close to B and vice versa

Interaction (Positive, Negative)

- Directed
- A is actor and B is receiver

Is it possible to use such tracking data to detect interactions between cows?

Experimental Data

Group of 15 Holstein-Friesian cows (free-stall barn at the FBN, Dummerstorf)

Observation period: 3 x 24 h on successive days

Video data

- Two video cameras for group coverage

Location data

- Ubisense (detection) and TrackLab (storage and export)
- 35 measurements per minute per tag (50,400 measurements per dag

Feeder data

- Ten feeding weight scale bins and two waterers with Roughage Intake Control (RIC)

Data Processing

Video data – used as "Gold standard"

- Video analysis using Mangold Interact
 - 1. Interactions (e.g., grooming, displacement) in defined zones for 3 days
 - 2. Barn location (predefined zone membership) of each cow for one day

TrackLab data – Workflow

Data Export

Data export from TrackLab

- Copy and paste as no built-in data export functionality in TrackLab software

Overview of raw data

Data Smoothing – 3 Methods

Weighted Least Squares (WLS)

- TrackLab parameter: n=21 *measurements*
- Good for stationary measurements
- Strong effect on movement

Kalman Filter

- Smoothes movement well
- Little effect on stationary measurements

Sliding Window Approach

- Parameter: n=10 seconds
- Strong effect on stationary measurements
- Little effect on movement

Data Cleaning and Data Interpolation

Data Cleaning

- Remove time periods (approx. 4h per day): milking time, barn cleaning (cows absent)

feeder locked (cows present)

Data Interpolation

- Tags are measured at different timepoints
- Interpolate X and Y coordinates to each full second

	Day 1	Day 2	Day 3
No. of measurements	72,889	75,424	70,981

- Both steps were also applied on the raw data termed as Original

Zone Assignment

Zone Assignment - X,Y-Coordinates

Compared to "Gold standard": Annotated video data of day 1

Sensitivity: How many measurements of the Gold standard are detected correctly?

Specificity: How many of the detected measurements are correct?

Zone Assignment – Add Feeder Information

Compared to "Gold standard": Annotated video data of day 1

Sensitivity: How many measurements of the Gold standard are detected correctly?

Specificity: How many of the detected measurements are correct?

Distance Calculation

Euclidean distance between any two tags at any timepoint

Which distance is close?

Association

Calculate the average distance for each of the three days for each pair of COWS (exemplary shown for Original measurements)

Color Key

6 8 10

2

Interaction Detection

100 interactions at Feeder/Water (excluding milking time and time where feeder locked; Observer1)

Displacements mainly classified into:

- 1. Replacements: cow A displaces cow B \rightarrow to eat/drink at the same specific Feeder/Water \rightarrow n=70 detectable
 - \rightarrow **n= 6** not detectable (special cases and technical problems)
- Pushing: cow A pushes cow B away from the Feeder/Water →n=20 (not searched)

Day 1	Observer1	Original	Kalman	Sliding 10	WLS
True detected	70	66	67	51	47
False detected		5	5	6	5
Newly revealed		30	30	28	28

Newly revealed interactions verified by Observer2

Additional 2 replacements were found by Observer2

Interaction Detection – Validation

			Replacements				
		Total Detectable Not detectable		Not detectable	Pushings	False observed	
Observe	er1 - Day2	111	49		11	39	12
Observer1 - Day3		109	79		3	18	9
		Observe	r1	Original	Kalman	Sliding 10	WLS
Day2	True detected	49		44	46	37	34
	False detected	-		5	3	4	5
	Newly revealed	-		17	19	18	17
Day3	True detected	79		69	69	60	51
	False detected	-		9	7	9	8
	Newly revealed	-		15	14	11	11

How good is the "Gold standard" created by only one observer?

Conclusion

Interaction detection using automatic tracking data is possible

- Good data quality is needed, includes careful data preparation
- Additional information like feeder data are useful

Smoothing has some effects

- To determine association between cows by averaging distances over a whole day smoothing is not necessary
- For zone assignment smoothing is advantageous
- Depending on the research aim other methods may be useful

Automatic tracking data holds many hidden treasures

- 24 hour monitoring of groups of cattle

Enz

Thank You For Your Attention

Dummerstorf Leibniz Institute for Farm Animal Biology FBN

Leibniz-Institut für Nutztierbiologie FBN

Wilhelm-Stahl-Allee 2 18196 Dummerstorf

Contact

Shivateja Medisetti

Phone: +49 38208 68 931 E-Mail: medisetti@fbn-dummerstorf.de Internet: www.fbn-dummerstorf.de

Many thanks to

the technicians of the Institute of Genetics and Biometry and the Institute of Behavioural Physiology the staff in the barn Hans-Georg Haas for video observation

the BMBF for funding (#0315536G)

SPONSOBED BY THE

Federal Ministry of Education and Research

