

Christian-Albrechts-Universität zu Kiel

Promote breed conservation by implementing specific traits for a local sheep breed

J. Schäler¹, S. Addo¹, G. Thaller¹ & D. Hinrichs²

¹Christian-Albrechts-University of Kiel, Institute of Animal Breeding and Husbandry, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany ²Department of Animal Breeding, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany

> 69th Annual EAAP Meeting Dubrovnik, Croatia, 27th to 31st August 2018

Session 01, Abstract number 27975, jschaeler@tierzucht.uni-kiel.de

CIAU

Introduction (in general)

- Many local breeds are endangered → Genetic diversity ↓
- Need for genetic diversity \rightarrow Gene reservoir for future (Boettcher et al., 2010)
- Certain traits of local breeds are not identified or phenotypically recorded in conventional breeding schemes
- Specific traits of local breeds (e.g. traits for specific environments) may get lost over years due to artificial considered traits

Introduction (in detail)

 Farmers want to emphasise breed-specific characteristics under extensive environmental conditions → History of this local breed

Introduction (in detail)

- Farmers want to emphasise breed-specific characteristics under extensive environmental conditions → History of this local breed
 - > Main purpose:
 - Landscape conservation on dykes
 - Make dyke slip-proof
 - Densify soil condition
 - Ensure against floodings
 - Captured outside whole year with progeny under extensive feed

- Breeding goal:
 - Robust
 - Muscled
 - Well-growing
 - Grazing in maritime climates

Christian-Albrechts-Universität zu Kiel

- Various soil conditions

Introduction (in detail)

- Farmers want to emphasise breed-specific characteristics under extensive environmental conditions → History of this local breed
 - > Main purpose:
 - Landscape conservation on dykes
 - Make dyke slip-proof
 - Densify soil condition
 - Ensure against floodings
 - Captured outside whole year with progeny under extensive feed

- Breeding goal:
 - Robust
 - Muscled
 - Well-growing
 - Grazing in maritime climates

Christian-Albrechts-Universität zu Kiel

- Various soil conditions
- Conventional traits of average daily gain under intensive conditions (ADG_I), muscularity (MUSC), and wool (WOL)

Introduction (in detail)

- Farmers want to emphasise breed-specific characteristics under extensive environmental conditions → History of this local breed
 - > Main purpose:
 - Landscape conservation on dykes
 - Make dyke slip-proof
 - Densify soil condition
 - Ensure against floodings
 - Captured outside whole year with progeny under extensive feed

- Breeding goal:
 - Robust
 - Muscled
 - Well-growing
 - Grazing in maritime climates

Christian-Albrechts-Universität zu Kiel

- Various soil conditions

Test station

 Conventional traits of average daily gain under intensive conditions (ADG_I), muscularity (MUSC), and wool (WOL)

Aims

- Identification and implementation of specific traits for a local sheep breed
- Computation of estimated breeding values (EBVs) for specific traits based on phenotypic information from a field experiment
- Investigation of correlations between specific and conventional EBVs

Animals and Data

- German White-Headed Mutton (GWM)
- Datasets include:

٠

- Pedigree information
- EBVs for several traits and additional information on farm and breeders
- Datasets provided by herdbook associations (LKV SH and LV SH SZZ)

Phenotypes

- Data were collected in a field experiment on farm during a trial period of 100 days
- 14 GWM reference sires were progeny tested with 47 male for two traits:
 - Average daily gain under extensive conditions (ADG_E)
 - Ultrasonic muscle-fat ratio (UMFR)

U

Christian-Albrechts-Universität zu Kiel

C | A

Phenotypes

- Data were collected in a field experiment on farm during a trial period of 100 days
- 14 GWM reference sires were progeny tested with 47 male for two traits:
 - Average daily gain under extensive conditions (ADG_E)
 - Ultrasonic muscle-fat ratio (UMFR)

U

Christian-Albrechts-Universität zu Kiel

C | A

CAU

Christian-Albrechts-Universität zu Kiel

Animals and Data	Reference sire	Progeny testing for specific traits		
		ADG _F (g/day)	UMFR	
Phenotypic observations	ID 1	309.2	1.74	
	ID 2	333.0	1.53	
	ID 3	319.0	1.52	
	ID 4	329.0	1.53	
r = 0.62 (*)	ID 5	373.0	1.89	
	ID 6	317.0	1.40	
	ID 7	292.4	1.32	
U 375- U 350- U 325- U	ID 8	347.0	1.67	
	ID 9	371.0	2.78	
•	ID 10	287.0	1.65	
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Ultrasonic muscle-fat ratio (UMFR)	ID 11	335.0	1.40	
Phenotypic relation between ADG _E and UMFR	ID 12	288.4	1.36	
	ID 13	243.3	1.39	

ID 14

1.59

314.0

Methods

Estimation of genetic parameters and breeding values

- Linear mixed models (LMM) in 'asreml' R-package (Butler et al., 2009)
- LMM can be written as: $y = Xb + Z_Aa + \sum_k Z_ku_k + e$
- Genetic parameters of repeatability (t), heritability (h²), genetic (r_G) and phenotypic correlation (r_P) were estimated

 In addition, correlations between EBVs were estimated with function 'cor.test' from R-package 'stats' (R Core Team, 2018)

Results

Genetic parameters

			Linear mixed m	_inear mixed model (LMM)		
	Traits	Repeatability \hat{t} (SE)		Heritability $\widehat{h}^2({\sf SE})$		
t and h ² :	ADG _E	0.42	(0.31)	0.70	(0.95)	
	UMFR	0.46	(0.46)	0.83	(0.59)	
	Traits		ADG _E	UMFR		
			AD OE	0		
r _P :	ADG _E		-	0.62 (0.30)		
r _G :	UMFR		0.61 (0.29)		-	
	ADG _E = average dai	ly gain under ex	tensive circumstances;	UMFR=ultrason	ic muscle-fat ratio	

Results

Correlation between EBVs

EBV	MUSC	WOL	ADG _E	UMFR
ADGI	0.60 (*)	-0.12 (n.s.)	-0.11 (n.s.)	0.04 (n.s.)
MUSC		0.06 (n.s.)	-0.68 (**)	-0.31 (n.s.)
WOL			-0.40 (n.s.)	-0.17 (n.s.)
ADG _E				0.64 (*)

Estimates were tested for statistical significance: p-value \geq 0.05 (n.s.), < 0.05 (*), < 0.01 (**), < 0.001 (***); ADG_I = average daily gain under intensive conditions; MUSC = muscularity; WOL = wool; ADG_E = average daily gain under extensive conditions; UMFR = ultrasonic muscle-fat ratio.

Conclusions

- ADG_E reflects the trait of average daily gain under common environmental conditions
- Slight negative correlation between ADG_I (test station) and ADG_E reflect genotype-environment interactions
- Selection of ADG_E will also improve meat-quality aspects (UMFR)
- Breeding schemes based on ADG_E may the best use of common environment, meat interests of farmers community, and contribute to genetic diversity

Christian-Albrechts-Universität zu Kiel

Acknowledgement

This study was funded by the Ministry of Energy, Agriculture, Environment, Nature and Digitalization

Wir fördern den ländlichen Raum

Landesprogramm ländlicher Raum: Gefördert durch die Europäische Union – Europäischer Landwirtschaftsfonds für die Entwicklung des ländlichen Raums (ELER), den Bund und das Land Schleswig-Holstein Hier investiert Europa in die ländlichen Gebiete

Schleswig-Holstein Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein

Christian-Albrechts-Universität zu Kiel

Acknowledgement

This study was funded by the Ministry of Energy, Agriculture, Environment, Nature and Digitalization

Thank you for your attention

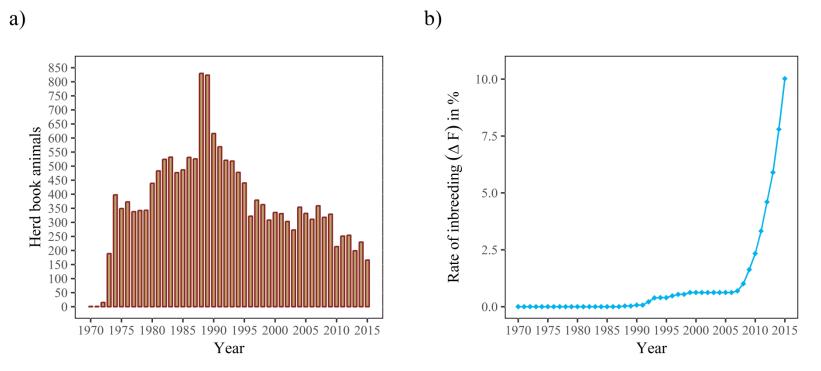
Landesprogramm ländlicher Raum: Gefördert durch die Europäische Union – Europäischer Landwirtschaftsfonds für die Entwicklung des ländlichen Raums (ELER), den Bund und das Land Schleswig Holstein Hier investiert Europa in die ländlichen Gebiete

| ∦ ⅍ ≫ ∓

Schleswig-Holstein Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein

Back up (1)

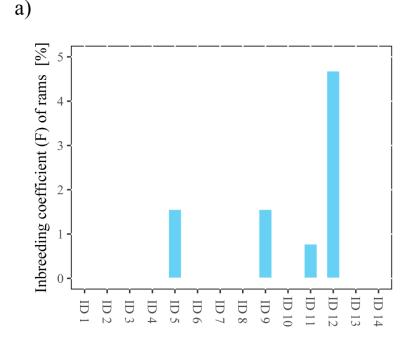
Inbreeding coefficient (F)

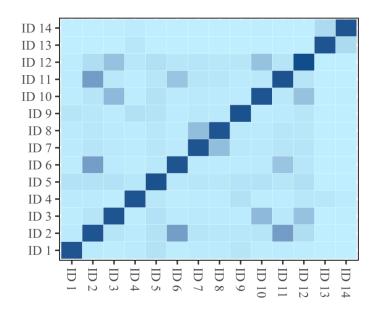

- Function 'pedInbreeding' from 'optiSel' R-package (Wellmann, 2018)
- Rates of inbreeding calculated as $\Delta F_i = (F_i F_{i-1})/(1 F_{i-1})$ between year *i* and *j*

 (ΔF_{i-i}) computed by average of annual inbreeding rates (Lewis and Simm, 2000)

Back up (2)

Population parameters: Herdbook size (a) and Rates of inbreeding (b)





Back up (3)

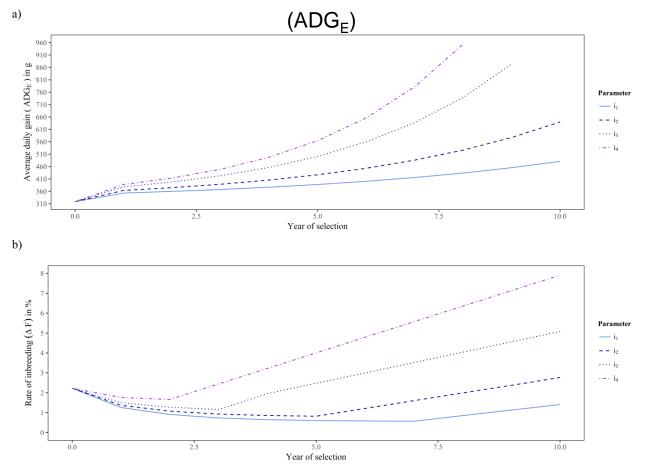
Population parameters: Inbreeding (a) and Relatedness (b)

b)

Back up (4)

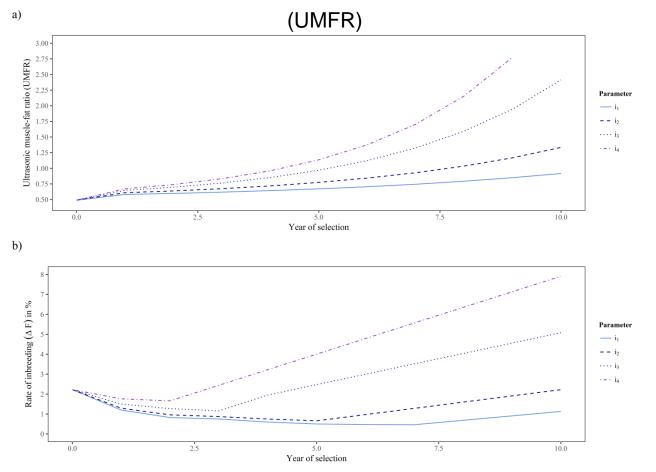
Trait implementation

- Selection on specific traits was simulated over 10 years
- Estimation of genetic response with $\Delta G = \frac{i * r_{BV} * \sigma_A}{L}$ (Rendel and Robertson, 1950)
- Four different selection intensities (i):


(1) $p50\% \rightarrow i_1 = 0.798$ (2) $p36\% \rightarrow i_2 = 1.039$ (3) $p21\% \rightarrow i_3 = 1.372$ (4) $p14\% \rightarrow i_4 = 1.590$

• Generation intervall (L) was 3.1 (Lewis and Simm, 2000) and accuracy (r_{BV}) was 0.725

Back up (5)


Trait implementation: Genetic gain (a) vs. Rates of inbreeding (b)

Back up (6)

Trait implementation: Genetic gain (a) vs. Rates of inbreeding (b)

