

INSIGHTS INTO THE MICROBIOTA COMPOSITION AND METATRANSCRIPTOME AT THE GUT-BODY INTERFACE

Martin Wagner^{1,2}, Stefanie U. Wetzels^{1,2,3}, Qendrim Zebeli^{2,3}, Barbara Metzler-Zebeli^{2,3}, Stephan Schmitz-Esser^{2,4}, Evelyne Mann^{1,2}

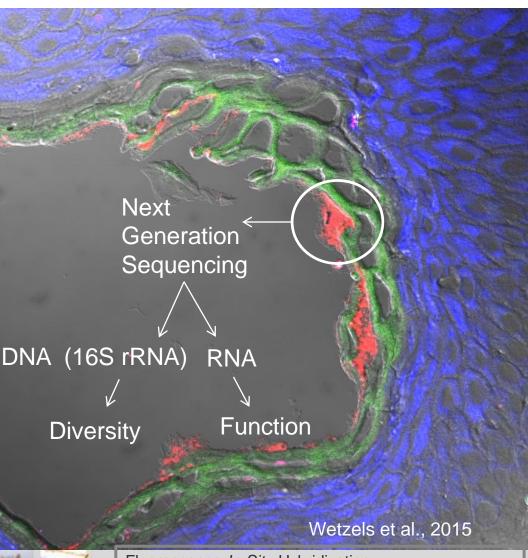
¹Institute for Milk Hygiene, Milk Technology and Food Science,

²Research Cluster 'Animal Gut Health',

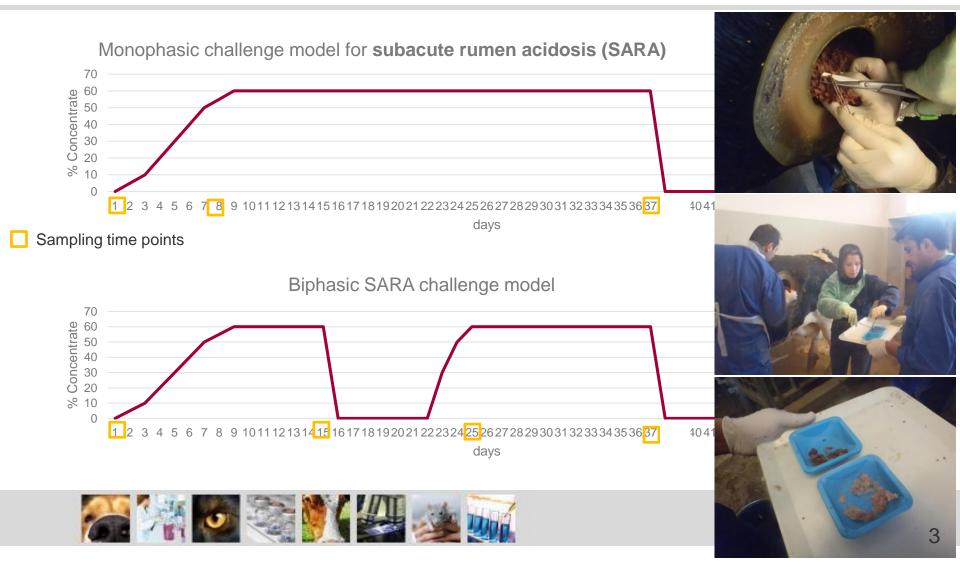
³Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria,

⁴Department of Animal Science, Iowa State University, Ames, IA, USA.

Veterinärmedizinische Universität Wien



Microbiota of the rumen wall

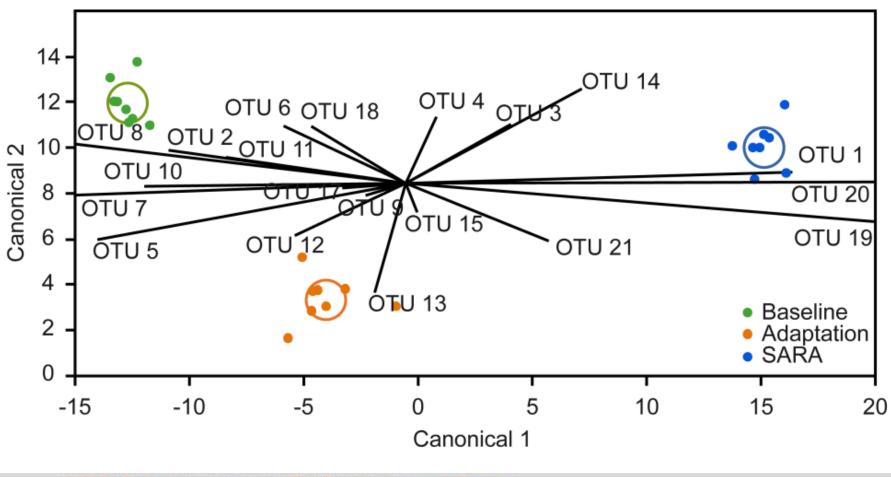


- 1% of ruminal bacteria attached to rumen wall (Mueller 1984)
- Multilayered keratinized epithelium
- Form protective biofilm (McCowan 1978)
- Possibly functions: hydrolysis of urea and scavenging of oxygen (Wallace 1979), tissue recycling (McCowan et al., 1978), amino acid metabolism (Mao et al., 2015)

Fluorescence-*In-Situ*-Hybridization: Cy5 (blue) & green = rumen epithelium Cy3 (red) = bacteria

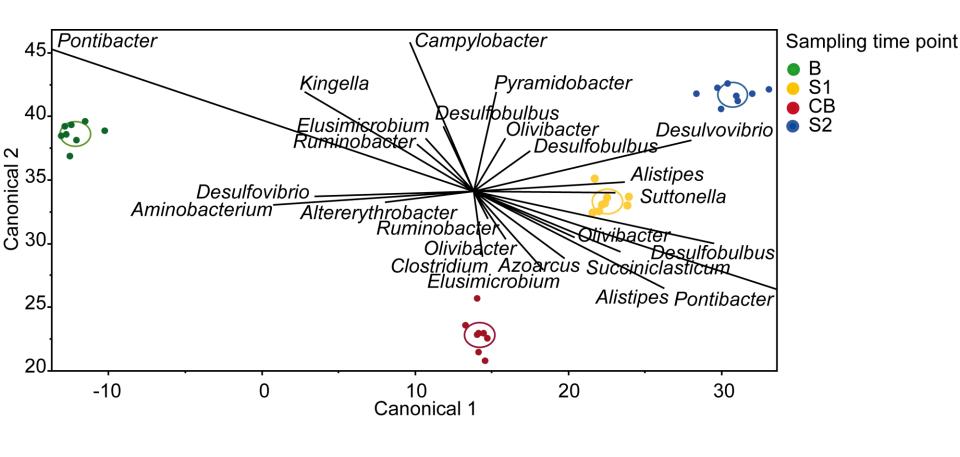
Study 1: How is the epimural ruminal microbiome constructed and does it contribute to metabolism?

Cows responded differently to the SARA challenge (n=8; 4 RES and 4 NRES)


Item ²	RES	NRES	SEM	<i>P</i> -value
Baseline (B)				
Daily mean pH	6.40	6.44	0.01	0.82
pH below 5.8 (min/d)	0	0	0	NA
Minimum pH	6.13	6.19	0.03	0.27
Maximum pH	6.66	6.65	0.03	0.84
Concentrate intake (kg DM/d)	0	0	0	-
Forage intake (kg DM/d)	8.63	9.05	0.46	0.68
Adaptation (A)				
Daily mean pH	5.92	6.22	0.09	0.11
pH below 5.8 (min/d)	495	135	132	0.21
Minimum pH	5.28	5.74	0.14	0.09
Maximum pH	6.41	6.61	0.07	0.18
Concentrate intake (kg DM/d)	8.65	6.42	0.75	0.16
Forage intake (kg DM/d)	7.05	6.71	0.80	0.85
SARA (S)				
Daily mean pH	5.80	6.38	0.12	0.01
pH below 5.8 (min/d)	653	30	139	0.03
Minimum pH	5.19	5.70	0.11	0.01
Maximum pH	6.34	6.89	0.12	0.02
Concentrate intake (kg DM/d)	9.10	10.80	0.74	0.28
Forage intake (kg DM/d)	5.48	6.66	0.59	0.36

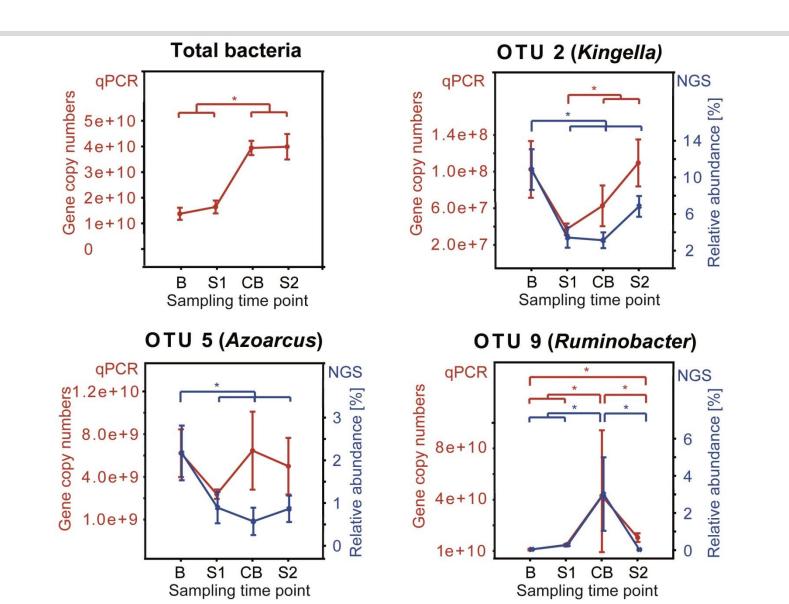
¹ RES were defined as cows that developed SARA (ruminal pH below 5.8 for at least 330 min/d) and NRES were defined as cows not developing SARA according to the criterion defined above.

² Baseline was 2-wk of forage feeding, Adaptation was 1-wk adaptation to SARA diet, SARA challenge was 4-wk of SARA challenge.



Microbiota from each challenge period cluster separately

A biphasic challenge drives microbiota further distinct



7

Sequencing data confirmed by qPCR

Conclusions – Diversity of the epimural microbiota

- Microbiota of the rumen epithelium are highly diverse from the microbiota in the lumen
- Campylobacter and Neisseriaceae most abundant
- Strong shifts in microbiota with high-concentrate feeding
 - Independently of RES/NRES affiliation
- Different animal response to continuous high-concentrate diet (RES/NRES)-not explainable by diversity shifts
- Epimural microbiota after the 2nd SARA more distinct to baseline than after 1st SARA (transient feeding model)
- Challenge break (one week) not enough for epimural bacterial community to recover from SARA.

Metatranscriptome sequencing-based insights vetmed into the rumen wall microbiota gene expression (n=6; three each baseline and SARA challenge)

Nitrogen metabolism:

- Flavobacterium, Clostridium, Helicobacter (Urease)
- Campylobacter (dissimilatory nitrate reduction)
- Clostridium, Ruminococcus, Fibrobacter (Nitrogenase)

Oxydative stress response:

• Campylobacter, Atopobium, Bifidobacterium, Clostridium, Prevotella, Fibrobacter

Starch metabolism and degradation of cellulose & cellobiose:

• Verrucomicrobia, Clostridium (was thought to be a function of luminal microbiota)

Butyrate and propionate metabolism

Clostridium, Butyrivibrio, Burkholderia, Psychrobacter, Neisseria (SCFA metabolism)

Conclusions – Function of the epimural microbiota

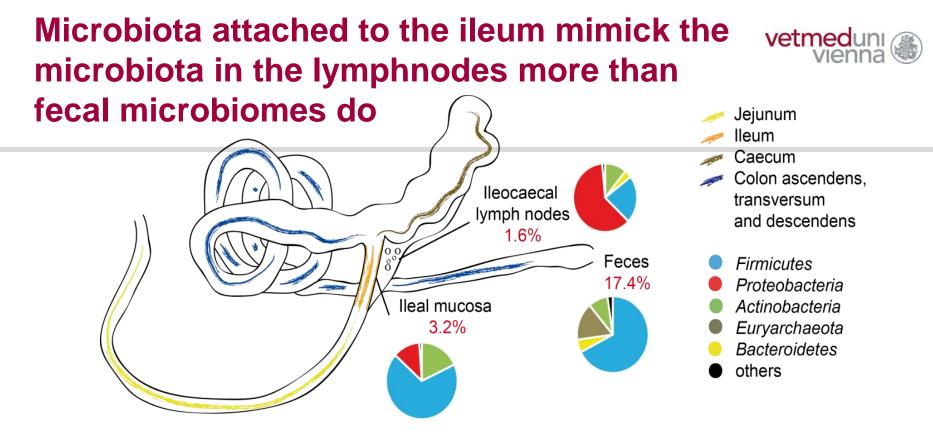
We found only few statistically significant differences between baseline and SARA in the metatranscriptome

- Community composition shifts; compensation at functional level?
- Functional guilds different strains/species within a genus may fulfil similar functions

EM display a vital (functional) part of the metabolism of the rumen

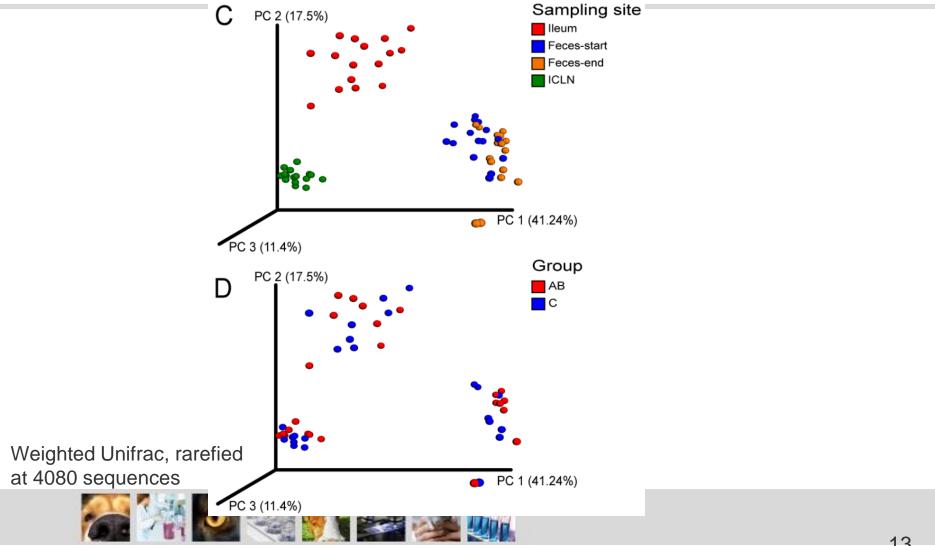
(Mann et al., Front. Micro. 2018)

- Housekeeping genes were among the highest expressed genes
- **Confirmed:** Nitrogen metabolism (Urease activity), Oxidative stress response
- New: Starch and cellulose/cellobiose degradation
 Butyrate and propionate production

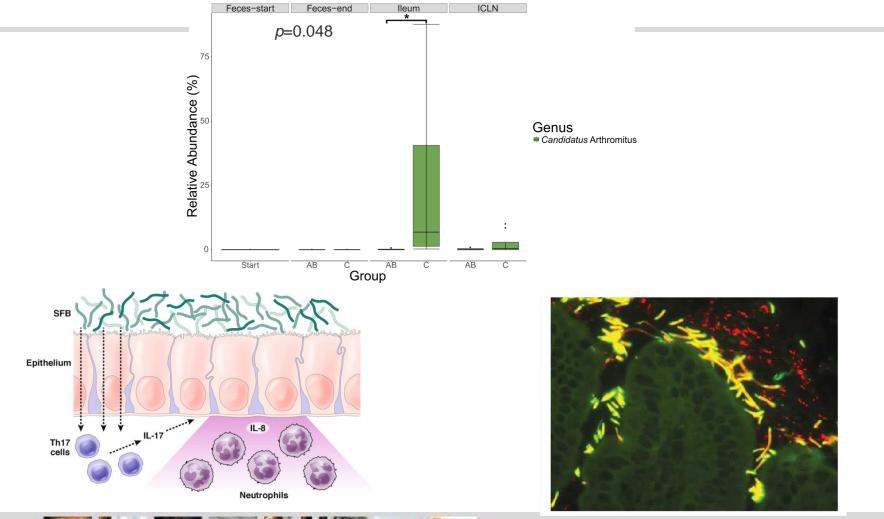

Study 2: How does AB challenge impact on fecal microbiota, attached microbiota and lymphnodes?

- 8 pigs per group (AB and control), 3 weeks adaptation phase
- 3 weeks diet, ± ABs (Colistin sulfate and Lincospectin)

	ICLN		Cultivation	
AB	lleum	165 rDNA gono coguoncing	Membrane integrity	
AD	Feces-end	16S rRNA gene sequencing		
	Feces-start			
	ICLN		Cultivation	Metatranscriptome
	ICLN Ileum	165 rPNA gono coquencing	Cultivation Membrane integrity	Metatranscriptome
		16S rRNA gene sequencing		Metatranscriptome

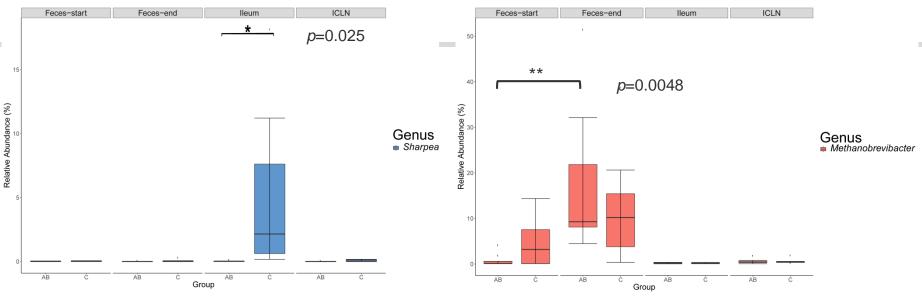


Antibiotic treatment had a significant effect on 17.4 % of the OTUs in feces, 3.2 % in ileal mucosa, and 1.6 % in ICLN samples.


-> Bacteria might escape antibiotic treatment in lymphnodes

vetmedun Microbial communities separate by tissue and group

Depletion of mucosa-associated segmented filamentous bacteria



From Caroline H.T. Hall, Eric L. Campbell, Sean P. Colgan: Neutrophils as Components of Mucosal Homeostasis; Cellular and Molecular Gastroenterology and Hepatology; 4, 3, 2017; Pages 329-337;

Image courtesy of N.H.S. and P. Teggatz, Medical College of Wisconsin, Milwaukee, USA; (from Bevins and Salzman, 2011)

vetmeduni vienna

Increased methanogenesis upon antibiotic treatment?

Sharpea

- Gram-positive, anaerobic *Firmicutes*
- Associated to increased lactate formation(heterofermentative glycolysis) and low-methane emission (competes for H2)

Methanobrevibacter

- Methanogenic Archaea
- Quickly occupying freed niches from bacteria that have been killed by the ABs
- Likely contributing to increased carbohydrate metabolism

- As for gut microbiota, microbiota of ileal mucosa and ileocaecal lymphnodes (ICLN) represent unique corresponding environmental microbial niches
- AB challenge had a remarkable impact on the gut (fecal) microbiome, but less impact on ileum-attached OTUs and almost none on the lymphnode microbiome-protective microbial mechanisms involved or only a pharmacokinetic effect?
- Evidence that Proteobacteria (e.g. EPEC) could escape antibiotic treatment, if they are translocated to lymph nodes (risk factor during slaughtering and meat cutting (incision)
- AB treatment of livestock might have effects on global biogeochemical cycles

Acknowledgements

Prof. Qendrim Zebeli and coworkers Ass. Prof. Barbara Metzler-Zebeli

Institute for Milk Hygiene, Milk Technology and Food Science

Evelyne Mann, PhD Stefanie Wetzels, PhD

Iowa State University

Prof. Dr. Stephan Schmitz-Esser

- LFG Kremesberg
 - Clinic for Ruminants
 - Clinic for Swine medicine

VIENNA SCIENCE AND TECHNOLOGY FUND