

FT-MIR prediction of total ¹ antioxidant activity of bovine milk

M. Franzoi, G. Niero, M. Cassandro, and M. De Marchi

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy

Università degli Studi di Padova

2

Introduction

Quantification method

FT-MIR calibrations

Phenotypic analysis

Introduction: ROS

3

Mastitis, contributes to an alteration of cow milk oxidative status.

Milk is an important source of antioxidants Several compounds in milk contributes to its antioxidant activity Provides a defense from oxidative stress for consumers Prevention of other milk components (i.e. lipids) oxidation

Study phenotypic variation of TAA of Holstein-Friesian Cows from a large database milk FT-MIR spectra.

Niero et al., (2016) Development and validation of a near infrared spectrophotometric method to determine total antioxidant activity of milk. Food Chem.

Samples:

FT-MIR models

1,690 Italian Holstein Friesian Between 6 – 536 days in milk Between 1 and 9 parities From Sept 2017 to Feb 2018 17 herds

Models: UVE – PLS using SAS (ver. 9.4; SAS Institute Inc., Cary, NC) LOOCV validation procedure 20 maximum factors

Fitting statistics for the calibration model									
	Mean	SD	#V	#L	R ² p	SEP	R ² cv	SECV	RPD
TE (mM/L) Trolox Equivalents	7.07	0.82	123	10	0.45	0.61	0.44	0.62	1.33

Spectra of Holstein Friesian reared in North of Italy

- 6 305 days in milk (10 days classes)
- 1 9 parities (1 ≥5 classes)

Herds with more than 5 cows

8

83,482 observations from 6,262 cows and 168 herds

y_{ijkl} = μ + DIMclass_i + parity_i + (DIMclass x parity)_{ij} + HTD_k + Cow_l

	Results								
Descriptive statistics for calibration and population databases									
		Number	Mean	Standard deviation	Min	Max			
TAA	Calibration (measured)	1,690	7.07	0.82	4.16	9.62			
	Population (predicted)	83,482	7.29	0.34	5.55	8.34			
Variation across lactation and parity									
7,50 7,40 7,30		*******	7,5 7,4 1 7 2	50 40 30					

TE = Trolox Equivalent

Correlations between TAA and traditional milk quality traits								
		Milk yield	Lactose	Fat	Protein	Casein	SCS	MUN
TAA	<i>r</i> on predictions	-0.18	-0.13	0.32	0.61	0.60	0.12	0.25
	<i>r</i> on residuals	-0.15	-0.20	0.12	0.68	0.63	0.11	0.16

Dilution effect

Lipid-soluble antioxidants

Main antioxidants in milk

Protection

Antioxidant

Total milk antioxidant activity is relevant both for consumers health and milk processing

FT-MIR can estimate total antioxidant activity of milk with medium-low accuracy, but can be useful for studies at population level

Correlations between total antioxidant activity and milk composition confirms the positive relationships between the new trait and protein content

The developed FT-MIR model could be useful for genetic and genomic studies

Aknowldegments

12

Südtiroler Rinderzuchtverband

Sarah Currò and Angela Costa for technical support

All our research group