

Effect of mating strategies on genetic and economic outcomes in a Montbéliarde dairy herd

MARIE BERODIER

M. BROCHARD, C. DEZETTER, N. BAREILLE, V. DUCROCQ

Study funded by MO3

The Montbéliarde breed in France

<u>In 2017</u>

- Dual purpose breed
- 2nd dairy breed in France
 - 17.7 % of French dairy cattle
 - 388 124 lactations recorded

2009: X- Sexed semen

↑ within herd selection intensity

2009: X- Sexed semen

↑ within herd selection intensity

2011: Commercial female genotyping

↑ within herd selection accuracy

2009: X- Sexed semen

↑ within herd selection intensity

2011: Commercial female genotyping

↑ within herd selection accuracy

↑ within herd genetic gain

2009: X- Sexed semen

2011: Commercial female genotyping

↑ within herd selection intensity

↑ within herd selection accuracy

↑ within herd genetic gain

2009: X- Sexed semen

2011: Commercial female genotyping

What is the impact of alternative replacement and genotyping strategies on genetics and economics at herd level?

ECOMAST simulation program

77-cows Montbéliarde herd

ECOMAST simulation program

77-cows Montbéliarde herd

ECOMAST simulation program

77-cows Montbéliarde herd

Pasture based farming system with relatively high milk price

ECOMAST simulation program

77-cows Montbéliarde herd

- Pasture based farming system with relatively high milk price
- Females genotyped when 15-day old (40€ all included)

- 15 years of simulation
 - 5 initialization years: no genotyping, no sexed nor beef breed semen
 - 10 years of different strategies

6

- 15 years of simulation
 - 5 initialization years: no genotyping, no sexed nor beef breed semen
 - 10 years of different strategies

Strategies:

Use of sexed semen		Use of beef breed semen
Yes	×	Yes
No		No

6

- Bars with different superscripts differ significantly (Tukey test)
- p-value < 0,05

G	G	G	G	
ISex-NCr	Sex-Cr	Sex-NCr	NSex-Cr	

Variation in ΔG of breeding objective from year 0 to year 10

Sexed semen ↑ genetic gain (+ 0.18 σ)

Variation in ΔG of breeding objective from year 0 to year 10

Female genotyping \uparrow genetic gain (+ 0.07 σ)

Variation in ΔG of breeding objective from year 0 to year 10

Use of sexed semen and female genotyping ↑ genetic gain

Variation in total products from year 0 to year 10

Variation in total products from year 0 to year 10

Variation in total products from year 0 to year 10

Variation in total product is linked to animals sales

Variation in total expenses from year 0 to year 10

Raising and reproduction costs increased a lot

Variation in total expenses from year 0 to year 10

Raising and reproduction costs increased a lot

Variation in net margin from year 0 to year 10

Always a gain in net margin

Use of sexed semen and female genotyping → ↑ genetic gain

- Use of sexed semen and female genotyping → ↑ genetic gain
- Benefits of "sexed semen only" strategy depend on the market

- Use of sexed semen and female genotyping → ↑ genetic gain
- Benefits of "sexed semen only" strategy depend on the market
- Long term sustainable strategy: "G sexed crossbreeding":
 - increases genetic gain,
 - maintains the increase in net margin
 - is less sensitive to fluctuations of market conditions

- Use of sexed semen and female genotyping → ↑ genetic gain
- Benefits of "sexed semen only" strategy depend on the market
- Long term sustainable strategy: "G sexed crossbreeding":
 - increases genetic gain,
 - maintains the increase in net margin
 - is less sensitive to fluctuations of market conditions
- Delay of several years before observing a return on investments

- Use of sexed semen and female genotyping → ↑ genetic gain
- Benefits of "sexed semen only" strategy depend on the market
- Long term sustainable strategy: "G sexed crossbreeding":
 - increases genetic gain,
 - maintains the increase in net margin
 - is less sensitive to fluctuations of market conditions
- Delay of several years before observing a return on investments

Interest of combining genotyping with use of sexed semen