

On host-microbiota interactions for the determinism of livestock phenotypes: an overview of recent results in pigs

Jordi Estellé

UMR1313 GABI, Jouy-en-Josas, France Jordi.Estelle@inra.fr

Symbiotic microbiota

Microbiota

- Population of microorganisms living in symbiosis with its host
- Intestine:
 - 10¹⁴ microorganisms (~ 1,5 Kg)
 - Implantation at early age
 - Relative stability along host's life

Dysbiosis

 Disequilirium of microbiota composition that can led to pathology

How to look at microbiota?

VS.

The first metagenome catalogue

Intestinal human microbiota:

- A catalogue including over 3.3 million bacterial genes (x150 times the human genome)
- A common «shared» core of 540000 genes
- At least three major enterotypes (Arumugam et al., Nature, 2011)
- Up to 9.9M genes in an integrated catalogue (Li et al. Nat. Biotech, 2014)
- Opens the possibility of shotgun metagenomics by re-sequencing human microbiomes

The pig other genome

nature microbiology

LETTERS

PUBLISHED: 19 SEPTEMBER 2016 | ARTICLE NUMBER: 16161 | DOI: 10.1038/NMICROBIOL.2016.161

A reference gene catalogue of the pig gut microbiome

Liang Xiao^{1†}, Jordi Estellé^{2†}, Pia Kiilerich^{3†}, Yuliaxis Ramayo-Caldas², Zhongkui Xia¹, Qiang Feng^{1‡}, Suisha Liang¹, Anni Øyan Pedersen⁴, Niels Jørgen Kjeldsen⁴, Chuan Liu^{1,5}, Emmanuelle Maguin⁶, Joël Doré^{6,7}, Nicolas Pons⁷, Emmanuelle Le Chatelier⁷, Edi Prifti^{7‡}, Junhua Li^{1,8}, Huijue Jia¹, Xin Liu¹, Xun Xu¹, Stanislav D. Ehrlich^{7,9}, Lise Madsen^{1,3,10}, Karsten Kristiansen^{1,3*}, Claire Rogel-Gaillard^{2*} and Jun Wang^{1,3*}

The pig other genome

- INRA Univ. Copenhagen BGI consortium
 - Whole porcine metagenome sequencing
 - De novo assembly and annotation by using:
 - 100 French pigs from different breeds and locations
 - 100 Danish pigs with different nutrition conditions
 - 87 Chinese pigs from intensive and extensive farms

to allow quantitative metagenomics in pigs

Samples representative of diversity:

287 animals: 17 breeds or selected lines, 11 farms, various ages and diets, 3 countries

- Native pigs:
 - France, West Indies: Creole pigs
 - China: Bama, Ba Ring, Tibetan
- Selected breeds
 - France: Large White (LW), Large White X Landrace, (Large White X Landrace) X Pietrain, Pietrain, Meishan
 - Denmark: (Landrace x Yorkshire) X Duroc
 - China: Large White, binary mixed, tertiary mixed
- Miniature model pigs
 - Yucatan
 - Pitman-Moore
 - MeLiM
 - Vietnamese

The pig other genome

A catalogue of 7.6M genes with 287 pigs

Comparison with human and mice

Greater overlap between pig and human than between mice and humans. At KEGG there much greater overlap: different microbiota but same functions

Comparison with human and mice

Pigs are richer, and richer is always better?

Questions for pig production:

- French set of pigs: 9 or 10 pigs / group
 - 10 breeds or lines from 7 farms
 - Females, males, castrated males
 - Age: 55 to 240 days
- Danish set of pigs: 25 or 50 pigs / group
 - 1 commercial line
 - Three farms
 - Various diets
 - Females, males, castrated males
- Chinese set of pigs: 12 to 19 pigs / group
 - 6 breeds or lines
 - 1 farm
 - Females

The pig other genome

Stratification of samples according to country of origin

The swine other genome

On host genetics and age effects

Prevalence of Ab resistance genes

Prevalence of Ab resistance genes

China, Denmark, France

Pigs or mice as better models for human microbiota?

RESEARCH Open Access

Similarity of the dog and human gut microbiomes in gene content and response to diet

Luis Pedro Coelho¹, Jens Roat Kultima¹, Paul Igor Costea¹, Coralie Fournier³, Yuanlong Pan², Gail Czarnecki-Maulden², Matthew Robert Hayward¹, Sofia K. Forslund¹, Thomas Sebastian Benedikt Schmidt¹, Patrick Descombes³, Janet R. Jackson², Qinghong Li^{2*†} and Peer Bork^{1,4,5*†}

How to look at microbiota?

VS.

SUS_FLORA ANR project: 16S fecal microbiota composition

Environmental Microbiology Reports (2015) 7(3), 554-569

doi:10.1111/1758-2229.12285

Early-life establishment of the swine gut microbiome and impact on host phenotypes

Núria Mach,^{1,2,3,4} Mustapha Berri,^{5,6} Jordi Estellé,^{3,4} Florence Levenez,^{1,2} Gaëtan Lemonnier,^{3,4} Catherine Denis,^{3,4} Jean-Jacques Leplat,^{3,4,7} Claire Chevaleyre,^{5,6} Yvon Billon,⁸ Joël Doré,^{1,2} Claire Rogel-Gaillard^{3,4†} and Patricia Lepage^{1,2*†}

The ISME Journal (2016), 1–5 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismei

SHORT COMMUNICATION

Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits

Yuliaxis Ramayo-Caldas¹, Nuria Mach¹, Patricia Lepage^{2,3}, Florence Levenez^{2,3}, Catherine Denis¹, Gaetan Lemonnier¹, Jean-Jacques Leplat^{1,4}, Yvon Billon⁵, Mustapha Berri⁶, Jöel Doré^{2,3}, Claire Rogel-Gaillard¹ and Jordi Estellé¹

SUS_FLORA project

- INRA GABI, Jouy
 - J. Estellé, Y Ramayo-Caldas, N Mach, G Lemonnier, C Denis, S Bouet, F Andreoletti, JP Bidanel, C Larzul, C Rogel-Gaillard
- CEA LREG, Jouy
 - G Piton, JJ Leplat, S Vincent-Naulleau
- INRA MICALIS, Jouy
 - P Lepage, N Mach, F Levenez, J Doré
- INRA TOXALIM, Toulouse
 - L Guzylack, IP Oswald
- INRA ISP, Tours
 - M Berri, F Meurens
- INRA VIM, Jouy
 - N Bertho
- INRA GENESI, Le Magneraud
 - J Bailly, Y Billon
- BIOPORC, Le Rheu
 - MJ Mercat

SUS_FLORA: dynamics of implantation

Mach et al., 2015, Environ Microbiol Rep

Two "enterotype-like" clusters detected in young piglets

Enterotype clusters and network analysis in the whole population (60 days old pigs)

Ramayo-Caldas et al., 2016, ISME Journal

"Enterotypes" linked to growth and intestine luminal IgA abundance

Validated at 60 days old cohort with 520 pigs

Mach et al., 2015, Environ Microbiol Rep Ramayo-Caldas et al., 2016, ISME Journal

SUS FLORA: links with health traits

rCCA ANALYSIS

PLT: platelets

MON: monocytes

GB: white blood cells

GRA: granulocytes;

CCMH: mean cell hemoglobin conc

LYM: lymphocytes GR: red blood cells

VGM: red cell distribution width

EOS: eosinophils Hct: hematocrit Hgb: hemoglobin

TCMH: mean cell hemoglobin

Pig gut microbiota and feed efficiency

Exploring a possible link between the intestinal microbiota and feed efficiency in pigs

McCormack UM, Curião T, Buzoianu SG, Prieto ML, Ryan T, Varley P, Crispie F, Magowan E, Metzler-Zebeli BU, Berry D, O'Sullivan O, Cotter PD, Gardiner GE, Lawlor PG

Higher abundance of "beneficial" bacteria:

- Prevotella and Butyrivibrio (faeces)
- Brevibacterium and Anaeroplasma (ileum)
- Lactobacillus (caecal content)

Higher ileal isobutyric acid concentrations

Improvement of metabolic capabilities

Fecal transplant modifies growth of piglets:

Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal Microbiota and Growth in Offspring

Ursula M. McCormack, ^{a,b} [©]Tânia Curião, ^a Toby Wilkinson, ^c [©]Barbara U. Metzler-Zebeli, ^d Henry Reyer, ^e Tomas Ryan, ^a Julia A. Calderon-Diaz, ^{a,f} Fiona Crispie, ^{g,h} Paul D. Cotter, ^{g,h} Christopher J. Creevey, ^c Gillian E. Gardiner, ^b Peadar G. Lawlor ^a

Animal, page 1 of 9 © The Animal Consortium 2018 doi:10.1017/S1751731118001611

Early intervention with faecal microbiota transplantation: an effective means to improve growth performance and the intestinal development of suckling piglets

C. S. Cheng¹, H. K. Wei^{1,4}, P. Wang¹, H. C. Yu¹, X. M. Zhang¹, S. W. Jiang^{2,3,4} and J. Peng^{1,4†}

HOME ISSUES ABOUT SERIES ARTICLE TYPES PUBLISH

Previous Article
Next Article >

Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs

Amelia Camarinha-Silva, Maria Maushammer, Robin Wellmann, Marius Vital, Siegfried Preuss and Jörn Bennewitz

GENETICS Early online May 3, 2017; https://doi.org/10.1534/genetics.117.200782

Host genetics and microbiota:

Bacteria	h^2	SE
Alloprevotella	0.34	0.16
Blautia	0.33	0.14
Catenibacterium	0.39	0.16
Lactobacillus	0.34	0.16
Uncultured Spirochaetales	0.52	0.15
Uncultured Spirochaetes	0.32	0.17
Uncultured Succinivibrionaceae	0.57	0.14
Uncultured Veillonellaceae	0.33	0.15

	Microbia	l prediction	Genomic prediction		
Trait	r_m	97.5% CI	r_g	97.5% CI	
DG	0.41	0.18:0.62	0.35	0.08:0.58	
FC	0.33	0.07:0.54	0.23	-0.04:0.48	
FI	0.33	0.15:0.51	0.20	-0.08:0.46	

- Microbiota information improve the accuracy of FE prediction
- Microbial explained 28%, 21% and 16% of DG, FC and FI variances (= "microbiability")

Poster SUSFLORA: genetic control

	Genus	h ²	SD		Genus	h^2	SD
	Anaerostipes	0,13	0,08	_	Lactobacillus	0,18	0,23
\prod	Anaerovibrio	0,26	0,17	L	Mitsuokella	0	0
	Blautia	0,24	0,09	\Box^-	Oscillospira	0,11	0,21
	Bulleidia	0,02	0,06		Parabacteroides	0,22	0,30
	Butyrivibrio	0,04	0,06		Peptococcus	0,14	0,08
	Campylobacter	0,34	0,10		Phascolarctobact	0,02	0,31
	Catenibacterium	0,16	0,08		Prevotella	0,37	0,27
	CF231	0,29	0,31		rc4-4	0,17	0,07
	Clostridium	0,11	0,32		Ruminococcus	0,55	0,16
	Desulfovibrio	0,09	0,43		Shuttleworthia	0,01	0,06
	Dorea	0,31	0,23		Sphaerochaeta	0,07	0,13
	Faecalibacterium	0,25	0,28		Streptococcus	0,13	0,10
	Fibrobacter	0,14	0,43		Succiniclasticum	0,05	0,18
	Flexispira	0,08	0,11] _	Sutterella	0,01	0,05
	Helicobacter	0,13	0,08		Treponema	0,29	0,03
Γ	Lachnobacterium	0,04	0,14		YRC22	0,36	0,10

Poster SUSFLORA: genetic control

ON THE INFLUENCE OF HOST GENETICS ON GUT MICROBIOTA COMPOSITION IN PIGS

J. Estellé^a, N. Mach^{a,b}, Y. Ramayo-Caldas^a, F. Levenez^b, G. Lemonnier^a, C. Denis^a, M. Berri^c, M.J. Mercat^d, Y. Billon^e, J. Doré^b, C. Larzul^{a,f}, P. Lepage^b, C. Rogel-Gaillard^a

RESEARCH Open Access

Host contributes to longitudinal diversity of [©] CTOSSEMARK fecal microbiota in swine selected for lean growth

Duc Lu^{1*}, Francesco Tiezzi¹, Constantino Schillebeeckx², Nathan P. McNulty², Clint Schwab³, Caleb Shull³ and Christian Maltecca 1*

- Alpha diversity and OTU richness were moderately heritable (0.15 - 0.33)
- Negative genetic correlations between alpha diversity BF (-0.53) and ADG (-0.45)
- -Microbiota diversity can be used as an indicator to improve host traits
- -Results are not homogeneous time points = relevant age effect!

weaning, week 15, and ~week 28

So: which age, sex, diet, location, ...?

Frese et al. Microbiome (2015) 3:28 DOI 10.1186/s40168-015-0091-8

RESEARCH

Open Access

Diet shapes the gut microbiome of pigs during nursing and weaning

Steven A. Frese^{1,2}, Kent Parker³, C. Chris Calvert³ and David A. Mills^{1,2*}

Talk session 58 (Thursday morning): Massacci et al.

Impact of weaning age on gut microbiota composition in piglets

> Received: 23 November 2017 Accepted: 4 August 2018 Published online: 24 August 2018

Fecal microbial composition associated with variation in feed efficiency in pigs depends on diet and sex¹

Lisanne M. G. Verschuren, †. L. Calus, † Alfons J. M. Jansman, † Rob Bergsma, † Egbert F. Knol,† Hélène Gilbert,§ and Olivier Zemb§

[†]Topigs Norsvin Research Center B.V., Beuningen, 6640 AA, The Netherlands; [‡]Wageningen UR, Livestock Research, Wageningen, 6700 AH, The Netherlands; §INRA – INPT – ENSAT – Université de Toulouse, GenPhySE, Castanet-Tolosan, 31326, France

OPEN Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions

> Daniel Crespo-Piazuelo 12, Jordi Estellé 3, Manuel Revilla 11, Lourdes Criado-Mesas 1, Yuliaxis Ramayo-Caldas^{3,4}, Cristina Óvilo o⁵, Ana I. Fernández⁵, Maria Ballester o⁴ & Josep M. Folch1,2

Different target phenotypes might have different optimal solutions for microbiota sampling and analysis!

Future in animal breeding: the best holobiont for a given environment!

- Integrative biology and advanced models necessary to define:
 - The best host (genetics) and the best intestinal microbiota (metagenomics) in a given environment (e.g. nutrition!) in order to optimize:
 - Production, immunocompetence, food efficiency, environmental impact, robustness, ...
- Microbiota is not "only" a new phenotype, neither an environmental factor: P = G + M + E

ARTICLE

doi:10.1038/nature11622

Analyses of pig genomes provide insight into porcine demography and evolution

A list of authors and their affiliations appears at the end of the paper

A reference gene catalogue of the pig gut microbiome

Liang Xiao¹, Jordi Estellé², Pia Kiilerich³, Yuliaxis Ramayo-Caldas², Zhongkui Xia¹, Qiang Feng¹, Suisha Liang¹, Anni Øyan Pedersen⁴, Niels Jørgen Kjeldsen⁴, Chuan Liu¹, Emmanuelle Maguin⁶, Joël Doré⁶, Nicolas Pons², Emmanuelle Le Chatelier², Edi Prifti², Junhua Li¹, Huijue Jia¹, Xin Liu¹, Xun Xu¹, Stanislav D. Ehrlich², Lise Madsen¹, Karsten Kristiansen¹, Claire Rogel-Gaillard²* and Jun Wang¹³.

PUBLISHED: 19 SEPTEMBER 2016 | ARTICLE NUMBER: 16161 | DOI: 10.1038/NMICROBIOL.2016.16

nature

microbiology

Thanks for your attention!

