Genetic approach of rumen metagenome: state of the art in small ruminant and perspectives

<u>C. Marie-Etancelin,</u> A. Meynadi<u>er</u>

August 2018, Dubrovnik, Croatia

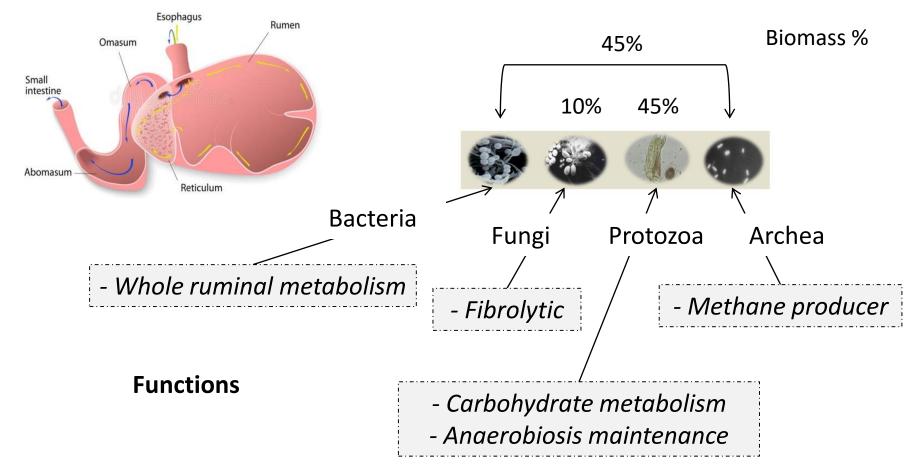
S. Rowe, A. Jonker

Rumen metagenome

Central role in the nutrition of the ruminant host

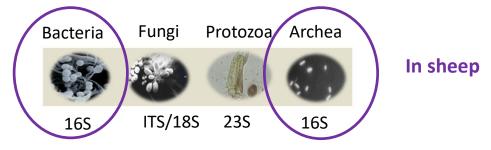
- Degradation of vegetable fibers (cellulose ...),
- Degradation of non-structural carbohydrates (e.g. starch ...),
- Fermentation of sugars,
- Bio-hydrogenation of unsaturated fatty acids,
- Production of short chain fatty acids, microbial proteins and vitamins,

Affect animal production (meat, milk, health...) Produces also undesirable by-products such as methane


Bio-reactor

Rumen specificity

Ruminant digestive tract


Rumen microbiota composition

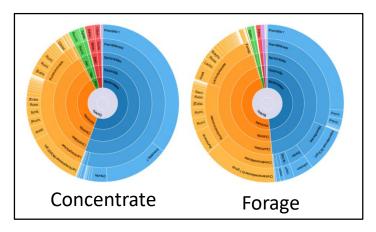
How to characterize the rumen composition ?

Targeted rRNA sequencing:

- → determination of <u>taxonomic abundance</u> within bacteria/archea/fungi/protozoa after a blast on specific databases
 (need long read sequences)
- Whole genome shotgun sequencing (WGS):
 - \rightarrow determination of abundance of <u>total genes</u> in the rumen (\cong including host or feed genome)
- Senotyping by sequencing (GBS) i.e. digestion of genomic DNA by restriction enzymes:

→ determination of <u>taxonomic abundance</u> for bacteria/archea/fungi/protozoa after a blast on Hungate1000 genomes database

(🙁 further evaluation needed ?)



Main factors of variation in the rumen composition

Feeding

Lambs fed with
 <u>concentrate</u> or 66% <u>hay mixed diet</u>
 (Marie-Etancelin et al., 2018)

Among <u>228</u> OTUS identified, <u>221</u> were significantly different according to diet

More "bacteroidetes" abundances with C vs F

More fibrolytic bacteria with F more amylolytic and lactolytic bacteria with C

 Fistulated lambs fed with 82% (/DM) of a <u>wheat based concentrate</u> to create a shift in RFA : t11-C18:1 → t10-C18:1(*) (Meynadier et al., 2018)

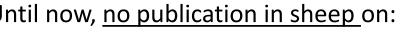
→ 2 types of animal's response :

* Animal A → 777 t10-C18:1 (/ t11-C18:1) strongly linked (r=0.83) with 777 % Porphyromonadaceae

* Animal B → t10-C18:1 remain < t11-C18:1

Animal

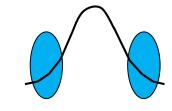
(*) causing an alteration of fat quality in product (milk/meat)


Genetic variability estimates of rumen microbiota

How is sheep genetics taken into account?

Until now, <u>no publication in sheep on:</u>

- GWAS on ruminal microbiota


- simultaneously host genomic and metagenomic contribution to variability of traits

Comparison of extreme animals (on phenotypic values, EBV, genetic divergent lines...)

Comparison of phenotypic extreme animals

Selection of meat type wethers for <u>extreme RFI phenotypes</u> (Ellison et al., 2017). Interaction with feed type (concentrate vs forage-based pellet)

Groups comparison for relative abundances of 349 OTUs :

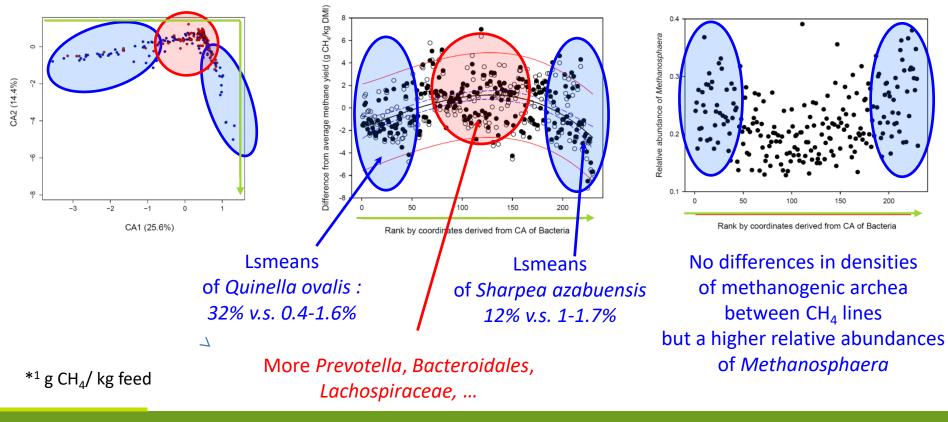
44 OTUs significantly different according to **Diet**

11 OTUs significantly different according to **RFI**

Greater abundance of « fiber degraders » bacteria and more diversity when lambs fed forage

RESULTS DIFFICULT TO INTERPRET Very little microbial species differences = difficult to determine which species contribute to feed efficiency

Comparison of genetic extreme animals for relative abundances of taxonomic classes/genus									
Selection of Merino wethers for <u>fleece weight EBV</u> (Barbieri et al., 2015)				Selection of Romane lambs for <u>feeding speed EBV</u> (Marie-Etancelin et al., 2018)					
				nificantly different ording to EBV		-	Feeding speed Index		
Wool Index						FS+	FS-		
	WG+	WG-			Syntrophococcus	1.44 ^b	2.86ª		
Bacteroidia	71.9ª	66.4 ^b			Lachospiraceae NC2004	0.02 ^b	0.10 ^a		
Clostridia	26.4 ^b	31.4 ª			Ruminiclostridium 9	0.01 ^a	0.00 ^b		
Differences in 2 bacteria classes but no link with physiological or ruminal parameters				High FS had more <i>Ruminiclostridium</i> (cellulolytic) and less <i>Syntrophococc</i>		tridium			


RESULTS DIFFICULT TO INTERPRET

Comparison of genetic lines

From low and high <u>methane emission</u>^{*1} NZ sheep (Kittelmann et al., 2014) : \geq

With a correspondence analysis of <u>bacteria and archea</u>,

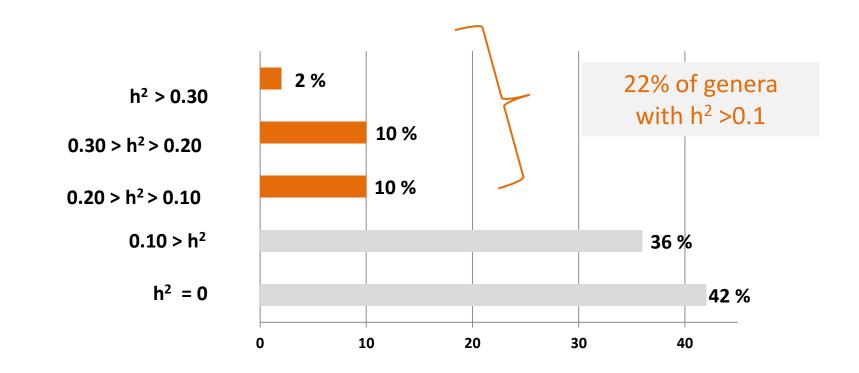
2 "ruminotypes" linked to CH_4 – 1 "ruminotype" linked to CH_4 +

Comparison of genetic lines

Selection of Lacaune ewes for Somatic Cell Count (Marie-Etancelin et al., present congress)

From 139 genera taxa of bacteria

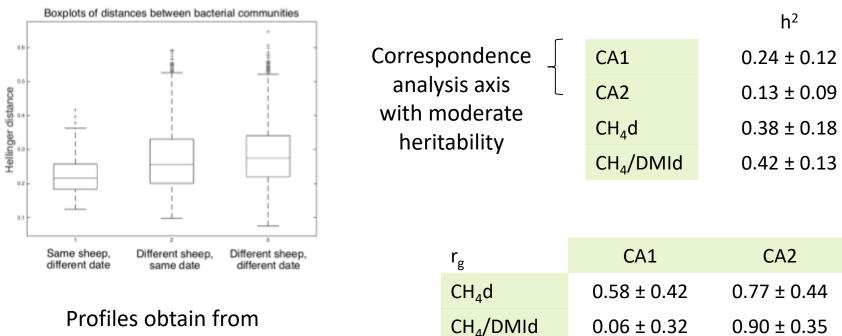
	P-value	CCS-	CCS+
Olsenella	>0.01	0.255 ^b	0.331 ^a
<u>Prevotella 1</u>	>0.01	<u>28.998</u> ^b	<u>33.039</u> ª
Prevotellaceae Ga6A1 gr	>0.001	0.067 ^b	0.107 ^a
Syntrophococcus	>0.05	0.068 ^b	0.099 ^a


In human and mouse links are made between an increase of Prevotella abundances and inflammatory diseases

Genetic parameters

> On dairy Lacaune ewes (Marie-Etancelin et al., 2018)

Heritabiliy (n=369 ewes) on 139 genus rumen taxa



Genetic parameters

On the same low and high <u>methane emission</u> NZ sheep (Rowe et al., 2015) :

the same sheep at different times were more similar than different sheep at same date

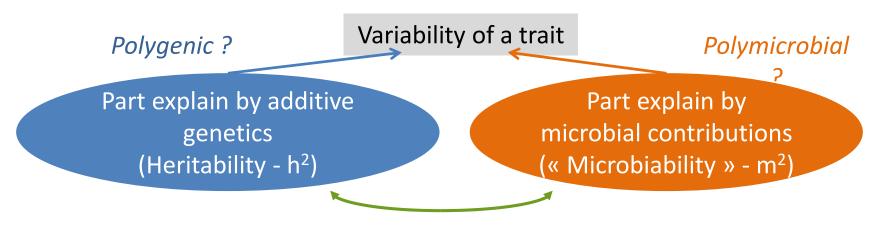
In axis 2, 80% of the variation of methane yield could be explain by rumen microbial community

Genetic parameters using GBS/RE-RRS

- > On the same low and high <u>methane emission</u> NZ sheep:
 - Reference-based (R): BLAST against Hungate 1000 Catalogue and assign to genus
 - Reference-free (RF): Count the number of times a set of common 65 bp tags appears

CA1	Heritability	Repeatability	r _g (CH₄/DMI)			
16S	0.26 ± 0.23	0.45 ± 0.08	0.65 ± 0.47			
ApeKI_R	0.62 ± 0.06	0.62 ± 0.06	0.59 ± 0.32			
Pstl_R	0.62 ± 0.06	0.62 ± 0.06	DNC	Did Not		
ApeKI_RF	0.07 ± 0.19	0.44 ± 0.07	DNC	Converge		
PstI_RF	0.23 ± 0.26	0.62 ± 0.06	0.83 ± 0.31]		
		≥ 16S	Best repeatability and correlation with methane yield			

GBS/RE-RRS is an appropriate method to obtain information on the rumen microbial community

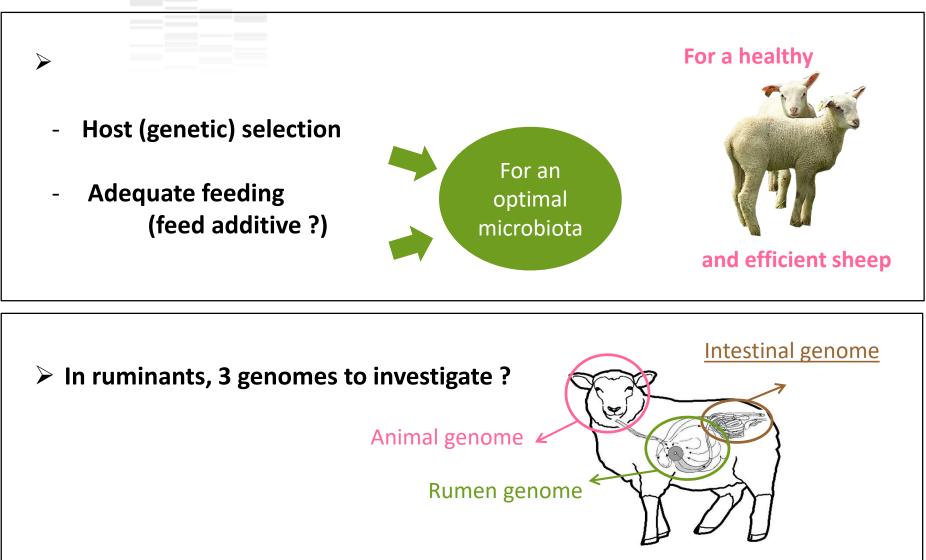


Some ideas to be developed ?

Camarinha-silva et al. (2017) in pig Difford et al. (2018) in cattle

"compare the % of variance of a trait explain

either by the genetic additive or the microbiota"



But microbiota is partly under the control of host genetics...

→ for CH_4 : → for ADG : but for FCR $\begin{array}{l} h^2 \ (0.18) & \sim m^2 \ (0.15) \ (\text{Difford et al.}) \\ h^2 \ (0.42) & >> m^2 \ (0.28) \\ h^2 \ (0.11) & \sim m^2 \ (0.16) \end{array} \right\} \ (\text{Camarinha-silva et al.})$

C. Marie-Etancelin, EAAP, August 27th 2018

Thank you for your attention !

Mirror lake in Fiordland (NZ)

Pyrenean mountain (FR)