Gut Microbiome Provides A New Source of Variation to Improve Growth Efficiency in Crossbred Pigs

Duc Lu, Francesco Tiezzi, Christian Maltecca

North Carolina State University, Raleigh, USA

1. Does microbiome determine the phenotype?

2. What shapes gut microbiome?

3. Metagenomic predictions

College of Agriculture and Life Sciences

NC STATE UNIVERSITY

1. Does microbiome determine the phenotype?

2. What shapes gut microbiome?

3. Metagenomic predictions

Statistical models:

- Fixed effects: sex, contemporary group, age
- Random effects:
 - ➤ Cluster
 - > Pen
 - ≻ Litter
 - Animal (GRM VanRaden's method 1)
 - Microbiome (MRM)

Lu et al., 2018, Microbiome Jensen-Shannon distance:

Proportion of total variance of BF22 explained by random effects.

	Model 1	Model 2
Var _g (h²)	0.52 ± 0.05	0.33 ± 0.06
Var _m (m²)	-	0.47 ± 0.09
Var _{pen}	0.01 ± 0.02	0.01 ± 0.01
Var _{litter}	0.03 ± 0.03	0.02 ± 0.02

Proportion of total variance of ADG22 explained by random effects.

	Model 1	Model 3
Var _g (h²)	0.27 ± 0.06	0.12 ± 0.03
Var _m	-	0.76 ± 0.06
Var _{pen}	0	0
Var _{litter}	0.07 ± 0.04	0.04 ± 0.02

On Meat quality ...

- Microbiome at off-test affects fat-related traits
- Microbiome at 15 wks affects muscle-related trait
- Microbiome at weaning doesn't affect anything

Work in progress

1. Does microbiome determine the phenotype?

2. What shapes gut microbiome?

3. Metagenomic predictions

NC STATE UNIVERSITY

College of Agriculture and Life Sciences

Shannon diversity index

 $d = -\sum_{i=1}^{n} p_i \ln(p_i)$

Shannon diversity index

$$d = -\sum_{i=1}^{n} p_i \ln(p_i)$$

Estimated genetic parameters of the Shannon index and their standard errors.

	Weaning	Week 15	Off-test
Weaning	0.04 ± 0.04	-0.01 ± 0.03	-0.04 ± 0.03
Week 15	-0.17 ± 0.48	0.15 ± 0.06	0.15 ± 0.03
Off-test	-0.34 ± 0.47	0.44 ± 0.25	0.33 ± 0.10

Genomic/phenotypic correlations between BF, ADG, and Shannon index at weaning and week 15

	Sha_w	Sha_15	BF_18	BF_22	ADGw_14	ADG14_22
Sha_w		-	0.05±0.03	0.06±0.03	0.04±0.03	0.07±0.03
Sha_15	-		-0.10±0.03	-0.08±0.03	-0.09±0.03	-0.09±0.03
BF_18	0.42±0.50	-0.53±0.23		-	0.43±0.03	0.31±0.03
BF_22	0.52±0.49	-0.45±0.25	-		-	0.45±0.03
ADGw_14	-0.73±0.51	-0.53±0.32	0.29±0.32	-		-
ADG14_22	0.44±0.48	-0.53±0.29	0.10±0.29	0.24±0.28	-	

What about single-OTU heritabilities?

Heritability for significant OTUs

ID_797 g_Bacteroides s_unassigned ID_918 g_Bacteroides s_uniformis ID_1523 g_Treponema s_unassigned ID_194 g_Succinivibrio s_dextrinosolvens ID 1025 g Succinivibrio s dextrinosolvens D_266 g_Schwartzia_55506 s_succinivorans ID_1126 g_Prevotella s_unassigned ID 515 g Prevotella s unassigned ID_308 g_Prevotella s_unassigned ID__852 g__Prevotella s__unassigned ID_75 g_Prevotella s_unassigned ID_17 g_Peptococcus s_niger ID_548 g_Oxalobacter s_formigenes ID_1085 g_Lactobacillus s_gasseri ID_773 g_Helicobacter s_bilis ID_745 g_Faecalibacterium s_prausnitzii ID__255 g__Eubacterium s__desmolans ID_1063 g_Eubacterium s_desmolans ID_130 g_Eubacterium s_hallii ID__157 g_Eubacterium s__unassigned ID_535 g_Coprococcus s_eutactus ID_327 g_Clostridium s_butyricum ID_348 g_Clostridium s_unassigned ID_889 g_Clostridium s_sp_id11 ID_139 g_Clostridium s_unassigned ID__1495 g__Clostridium s__unassigned ID 1137 g Blautia s obeum

Metagenomic predictions

<u>Objectives</u>:

Can Machine Learning help in understanding microbiome-phenotype relationships?

Submitted to Scientific Reports

Prediction:

- Reproducing Kernel Hilbert Spaces regression
- Bayesian LASSO
- Random Forest
- Gradient Boosting

Classification:

- Random Forest
- Recurrent Neural Network

RKHS > BL > RF > GBM

Classification

k-means groups at 22wk based on adg and bf (all microbiome timepoints) HgHf, LgLf, LgHf, HgLf

NC STATE UNIVERSITY

College of Agriculture and Life Sciences

Classification

 k-means groups at 22wk based on adg and bf (all microbiome timepoints) HgHf, LgLf, LgHf, HgLf

Further classification: timepoint

Further classification: timepoint

Further classification: contemporary group

Further classification: contemporary group

1. Does microbiome determine the phenotype?

2. What shapes gut microbiome?

3. Metagenomic predictions

NC STATE UNIVERSITY

Acknowledgements

- North Carolina Pork Council
- National Pork Board
- North Carolina Agricultural Foundation

Duc Lu Christian Maltecca Clint Schwab Kent Gray

Thank you for your attention!