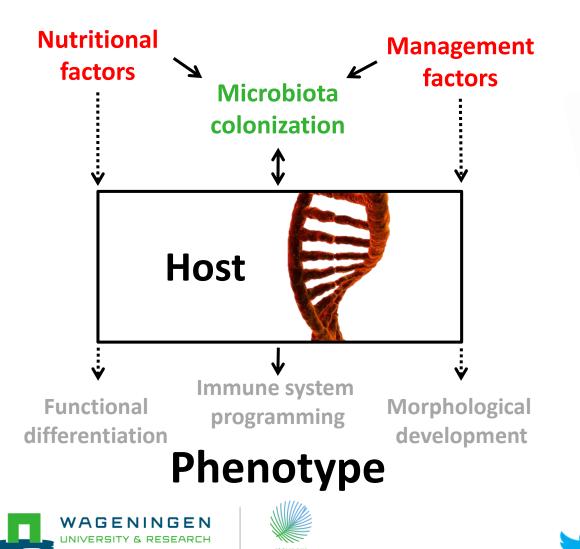
Faecal microbiome profiles can predict complex traits in pigs

D. Schokker, L.M.G. Verschuren, R. Bergsma, F. Molist, M.P.L. Calus

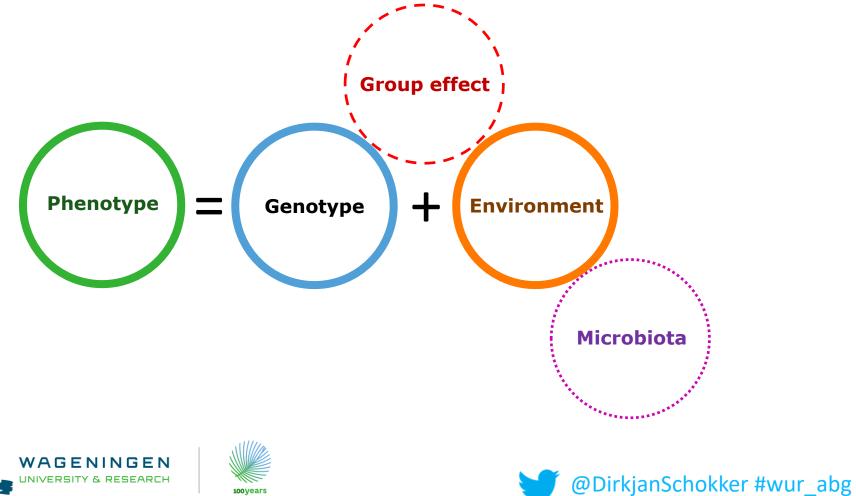
EAAP; August 2018

Acknowledgements

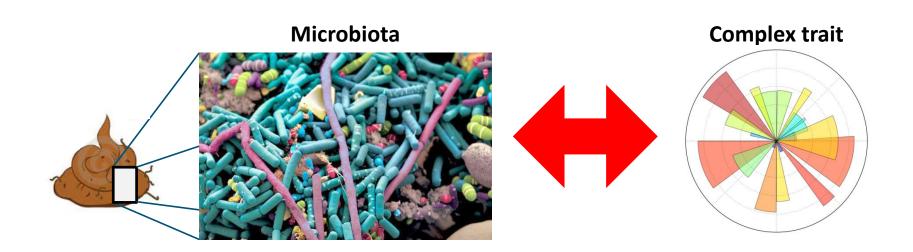


@DirkjanSchokker #wur_abg

Early life microbiota drive health and metabolic phenotypes



@DirkjanSchokker #wur_abg


Phenotypes <> complex traits

Almost all phenotypes (traits) are quantitative or complex traits

Objective

Identify **faecal microbiota profiles** associated to **important economical traits** in pigs

Details of the dataset

Three-breed crossed pigs

- S (LR x LW) or S (LW x LR)
- Phenotypic data were available for 160 animals
 - Start ±23 kg Slaughter ±120 kg
 - 20 litters, ~ 50% ♀/♂
 - 2 batches
 - 16 pens
- 2 Diets
 - Corn/soybean meal (CS)
 - Wheat/barley/by-products (WB)

irkjanSchokker #wur abg

Analysis – model (I)

Model: y = 1µ + fe + m + e

- **y** = vector of phenotypes
- μ = general mean
- **fe** = fixed effects (sex, diet & batch)
- m = vector of microbiotic predictions ~ $N(0, M\sigma_m^2)$
- e = vector of residuals

• Compute m^2 ("<u>microbiability</u>") as: $m^2 = \sigma_m^2 / (\sigma_m^2 + \sigma_e^2)$

Subsequently a leave-one out analysis was performed to test for significance

DirkjanSchokker #wur abg

Results (I)

Trait	Sex	Diet	Microbiability	Accuracy
ADG	0.855	0.610	50% (±13%)	0.36
FI	0.013	0.822	60% (±13%)	0.28

Only FI shows a significant effect of sex

- High microbiability values
- Here, we corrected for **batch** and not <u>pen</u> and <u>litter</u> (common environment)
- Our next step \rightarrow implement this in the model

Analysis – model (II)

Model: y = 1µ + fe + m + c + e

- **y** = vector of phenotypes
- μ = general mean
- **fe** = fixed effects (sex, diet & pen)
- **m** = vector of microbiotic predictions ~ $N(0, M\sigma_m^2)$
- **c** = vector of litter (common env.) effects
- **e** = vector of residuals

• Compute m^2 ("<u>microbiability</u>") as: $m^2 = \sigma_m^2 / (\sigma_m^2 + \sigma_e^2)$

Results (II)

Trait	Sex	Diet	Pen	Microbiability	Accuracy
ADG	0.241	0.949	0.068	38% (±13%)	0.08
FI	0.010	0.576	0.206	23% (±12%)	0.06

- ADG: Only trend for Pen
- FI: Sex difference is still observed
- Accuracies are not significantly different from 0
- Microbiability now in the range of 23-38%

Discussion

Phenotypes - complex traits

- Novel traits (*deep phenotyping*)
 - Performance parameters (ADG & FI)
- Snapshot of microbiota data *vs.*
 Iongitudinal performance data
- Possibility for health related traits or digestibility

Conclusions

Microbiability – possibility for breeding

- *m*² likely to be overestimated, because no animal genetic effect is included in the model
 - Need higher number of animals for better prediction
- Costs for sequencing are still decreasing
- Possibility to acquire faecal microbiota samples longitudinally

Thank you for your attention

dirkjan.schokker@wur.nl

+31 (0)317 480537

