

METHANE EMISSIONS EXPLAINED BY INTERACTIONS IN RUMEN MICROBIOME

Auffret MD, Martínez-Álvaro M, Wallace RJ, Freeman TC, Blasco A, Watson M, Roehe R

Leading the way in Agriculture and Rural Research, Education and Consulting

Overall aim:

Interactions between rumen microbial community and microbial genes to explain methane emissions

MICROBIAL COMMUNITIES

(Kraken database)

assembled genomes ______ (MAG) Genus level

✓ 1160 MAGs

Network analysis with functional genes and microbia

Division of animals in high (HME) & low (LME) methane emitters

CONSELLERIA D'EDUCACIO, INVESTIGACIO, CULTURA I ESPORT

Grouping within

- Breed (Limousin / Aberdeen Angus)
- ✓ Diet (Forage: 500 forage to 500 concentrate
- ✓ or Concentrate: 80 forage to 920 g/kg DM concentrate)

Statistics: GLM in R software. Model y = group + breed + diet + e

Methane emissions (g/kg DMI)				
MEAN	SD	CV	HME-LME	P-val
17.75	5.39	30.53	5.73	3.04E-15

In 2717 variables...

	P-val<0.05	P-val<0.1
Microbial Genes	22	71
Microbial Communities	34	97
Total	56	168

Effects of group, diet and breed type on methane emissions

Where are the variables with different relative abundance in HME and LME?

CONSELLERIA D'EDUCACIO, INVESTIGACIO, CULTURA I ESPORT

Cluster with main methanogens

Cluster description

AD POLICIA ALENCIA

GENERALITAT
VALENCIANA

CONSELLERIA D'EDUCACIÓ, INVESTIGACIÓ, CULTURA I ESPORT

Variable	Connections
Microbial genes	329
Archaea	15
Bacteria	69
Fungi	13
Protists	1
Total variables	427

MICROBIAL COMPOSITION IN ABUNDANCES (%)

Cluster with main methanogens

ALENCIA

GENERALITAT VALENCIANA			

CONSELLERIA D'EDUCACIÓ, INVESTIGACIÓ, CULTURA I ESPORT

	HME - LME			
Variable	Description	HME - LME	P- val	
Candidatus.Azobacteroides	Bacteria Bacteroidetes	0.0009	<0.050	
Endomicrobium	Bacteria Elusimicrobia	0.0015	<0.050	
Endozoicomonas	Bacteria Proteobacteria	0.0004	<0.050	
Pirellula	Bacteria Plantomycetes	0.0007	<0.1	
Anthracocystis	Fungi Basidiomycota	0.0006	<0.1	
K00091	dihydroflavonol-4-reductase	0.0015	<0.050	
K00639	glycine C-acetyltransferase	0.0045	<0.005	
K07072	(4-(4-[2-(gamma-L-glutamylamino) ethyl]phenoxymethyl)furan-2- yl)methanamine synthase	0.0009	<0.1	
K05884	(R)-2-hydroxyacid dehydrogenase	0.0023	<0.1	

Cluster with main methanogens

Explaining CH₄

Statistics: PLS Regression in R (mixOmics Package)

Final PLS			
$CH_4 = X$	Factors	%Varability X	%Variability of CH ₄
$\vec{X} = 5$ variables	1	78.1%	57.3%

Variable	Information	VIP	Regression Coefficient
Candidatus Azobacteroides*	Bacteria Bacteroidetes	1.03	0.177
Tremella	Fungi Basidiomycota	1.01	0.174
K02585	nitrogen fixation protein NifB	0.99	0.171
K00639*	glycine C-acetyltransferase	0.99	0.170
K00091*	dihydroflavonol-4-reductase	0.98	0.169

CONSELLERIA D'EDUCACIÓ, INVESTIGACIÓ, CULTURA I ESPORT

Different interactions in HME and LME Network analysis within group

UNSELLERIA D'EDUCACIO, INVESTIGACIO, CULTURA I ESPORT

Conclusions

- SRUC
- Bacteria (n=14) and Fungi (n=3) MAGs and microbial genes associated with carbohydrate degradation explain most of the differences between low and high methane emitters but not archaea and microbial gene associated with methane metabolism
 - ungi communities are

CONSELLERIA D'EDUCACIO, INVESTIGACIO, CULTURA I ESPORT

 These bacteria and fungi communities are therefore highly important for prediction of methane emissions from rumen samples

Thank you for your attention

CONSELLERIA D'EDUCACIÓ, INVESTIGACIÓ, CULTURA I ESPORT