

Can rumen microbes improve prediction of metabolic traits in Dairy cows?

Gareth F. Difford, G. Gebreyesus, A.J. Buitenhuis, P. Løvendahl, J. Lassen, B. Guldbrandtsen & G. Sahana

gareth.difford@mbg.au.dk

Acknowledgements

Metagenomics Project REMRUM Project

And With Special Thanks To

Background

- Phenotype = Genes + Environment
- For many traits this is not the case
- Rumen microbes form a key part of the engine!
- Feed utilization and methane
 - Completely dependent on rumen microbes
 - Produce VFAs: acetate, propionate and butyrate

Background

- Phenotype = Genes x Microbes x Environment
- Changing diet $\mathbf{E} \longrightarrow \mathbf{M}$
- Rumen bacteria & archaea h² G → M
- If **G** & **M** contribute to P
- One unit under natural selection

Zilber-Rosenberg and Rosenberg, 2008; Bordenstein & Theis, 2015

Photo: Yokoyama & Cobos

- Metabolic disease
- High yielding dairy cows susceptible
- Severe NEB, mobilized fat exceeds capacity of liver
- Increased ketone bodies in milk, blood and urine
 - Biomarkers: Milk Acetone and BHB
 - Decreased ruminal propionate production
- Lowly heritable ($h^2 = 0.02 0.14$)

Research Questions

1) Do rumen microbes explain variation in Ketosis?

2) Can rumen microbial information improve prediction of Ketosis?

Rumen Samples

- Rumen Flora Scoop
- 16S rRNA gene amplicon sequencing & assembly
- Alignment & assembly: 'bins' 97% similarity = OTU
- OTU ~ relative counts of different **bacterial** and **archaeal** species

Data

- 277 lactating Holsteins 3 herds E
- Milk metabolites NMR:
 - BetaHydroxyButyrate(BHB)
 - Acetone(ACE)

CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

- Rumen Bacterial (4030) & Archaeal (203) OTU's
- Illumina BovineSNP50 BeadChip > HD

Analysis

• Variance components estimation (DMU)

GBLUP MBLUP

- Y = Xb + Zg + e Y = Xb + Wm + e
- Microbial relationship matrix

•
$$h^2 = \frac{Vg}{Vp}$$
 $m^2 = \frac{Vm}{Vp}$

16S rRNA bacterial & archaeal abundance intra-class correlation Microbiability (m²) Coefficient

Results

	heritability	microbiability
Acetone	0.10	0.15
BHB	0.03	0.15

Prediction reliabilties

- Five fold validation (20%)
- Reliability computed as correlation between:

MBLUP: corr(cY; MV)/m² GBLUP: corr(cY; EBVs)/h²

Results

	G reliability	M reliability
Acetone	0.25	0.35
BHB	0.02	0.55

Conclusions

- m² a tool for identifying and quantify M contributions to complex phenotypes
- M explains more variation in Ace and BHB than G
- Prediction reliabilities of MBLUP exceeds GBULP
- Microbes Correlation is not necessarily causation