

Keeping watch on lambing ewes

New approaches to understanding lamb mortality

Sabine Schmoelzl | Team Leader Animal Monitoring 27 August 2018

AGRICULTURE AND FOOD www.csiro.au

Lamb survival in Australia

- South East Victoria & Tasmania
 - Animal Welfare top 3 priorities
 - Improved lamb survival
 - Continue research into foetal loss and lamb mortalities
- NSW Central West & Rangelands
 - Lamb/calf survival in top 3 priorities
 - Research into foetal loss/lamb mortalities

Increasing lamb survival

Identifying lambing behaviours relating to neonatal mortality

Estimated annual economic cost Australia

From Lane, J. (2015). Priority list of endemic diseases for the red meat industries, MLA.

Biggest risk group in Australia

"Improving lamb survival had a large impact on profit. AU\$7.50 to AU\$8.40 or AU\$11.20 to AU\$16.20, respectively, could be spent per a single or twin-bearing ewe to increase the survival of single or twin lambs by 10%."

CSIRO PUBLISHING

Animal Production Science, 2014, 54, 645–655 http://dx.doi.org/10.1071/AN13269

The critical control points for increasing reproductive performance can be used to inform research priorities

J. M. Young^A, J. Trompf^B and A. N. Thompson^{C,D,E,F}

^AFarming Systems Analysis Service, RMB 309, Kojonup, WA 6395, Australia.
^BJ.T. Agri-Source, Mill Park, Vic. 3082, Australia.
^CDepartment of Agriculture and Food, 3 Baron-Hay Court, South Perth, WA 6151, Australia.
^DSchool of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.
^ECRC for Sheep Industry Innovation and the University of New England, Armidale, NSW 2351, Australia.
^FCorresponding author. Email: andrew.thompson@murdoch.edu.au

Causes of lamb loss – Information Nucleus Flock

Data from Refshauge et al (2016) Animal Production Science 56, 726-735.

Causes of lamb loss cont.

CAUSE OF DEATH	INFORMATION NUCLEUS FLOCK	SENTINEL FLOCK (VIC)
Dystocia	47% (total)	31% (likely does not include Dys3)
Dys1	8.8%	
Dys2	20.6%	
Dys3 (incl. starvation)	18%	
Starvation/Mismothering	25%	45% (likely does include Dys3)
Predation	6.7%	4%
Premature/dead in utero	10.6%	11%
Exposure	5.6% (distinct climatic events contribute most significantly)	8%
Infection	0.6%	5%

Birth related injuries

- = prolonged labour = dystocia
- Increased risk for hypoxia
- Of greatest risk: high birthweight singles
- Any twins
- Any pure bred Merino
- Rate of twinning in Merinos greatly increased

Our approach

• Sensors!

Our approach

- Sensors!
- Measurement of parturition length
- Building on CSIRO investment
- Once established can be used to validate hypotheses for underlying causes, and estimate relative contributions
- Collaboration with INRA and AgResearch

XI	5.	ð• :		DATA-00	5.CSV - Exc	el	3	· • –	□ ×
F	LE HON	INSER	T PAGE LA	YOUT FOR	MULAS D	ATA REV	IEW VIEW	Schmoelzl	- 0
Pas Clip	te	A III	ment Numbe	Forma	tional Form It as Table * tyles * Styles	atting *	Cells Editing		^
Δ1			x J	fr: Title					~
~1				ja ,me					
	Α	В	C	D	E	F	G	Н	<u> </u>
1	;Title	http://ww	HAM-x16	ADXL345					
2	;Version	1102	Build date	Oct 9 201	SN:CCDC	1016C151	AOA		
3	;Start_time	2017-08-1	1 04:34:11.8	311					
4	;Temperat	-999	deg C	Vbat	3994	mv			
5	;SampleRa	12	Hz						
6	;Deadband	0	counts						
7	;Deadband	5	sec						
8	;Time	Ax	Ay	Az					
9	0.039	-1790	949	-177					
10	0.117	-1754	932	-204					
11	0.196	-1777	874	-174					
12	0.274	-1807	860	-149					
13	0.352	-1781	915	-218					
14	0.43	-1841	839	-202					
15	0.509	-1806	840	-184					
16	0.587	-1779	921	-193					
17	0.665	-1809	857	-147					
18	0.743	-1775	855	-174					
19	0.822	-1811	914	-211					
20	0.9	-1800	851	-170					
21	0.978	-1786	855	-177					
22	1.056	-1852	903	-227					-
	•	DATA-00	5 +			E .			•
REAL						•		++	100%

Discrepancy from expected tested with Chi-Square test; P value (two-tailed) 0.002415

Analysis

Single vs twins

Parity

CSIRO

Ram breed

Merino vs cross bred

23 | Keeping watch on lambing ewes | Sabine Schmoelzl

	Duration in min	Difficulty	Discrepancy		count	twins
	1271.00	difficult				
	1005.00	difficult				
	1002.90	difficult				
	885.00	difficult				
	827.90	difficult				
	795.93	normal	long normal	false negative	12	
	775.00	normal	long normal	false negative		
	760.00	difficult				
	685.00	difficult	laws a second	false anathur		
	530.00	normal	long normal	false negative		
	510.00	difficult	iong normal	rube negative		
	502.00	difficult				
	464.90	normal	long normal	false negative		
	407.93	normal	long normal	false negative		
	388.00	normal	long normal	false negative		
	385.00	difficult				
	369.00	difficult				
	368.00	difficult				
	366.00	normal	long normal	false negative		
	366.00	normal	long normal	false negative		
	340.00	normal	long normal	false negative		
	330.00	normal	long normal	false negative		
llnner 95% Cl of	329.00	difficult				
	281.00	difficult				
	253.00	normal	long normal	false negative		
mean = 205.6	225.00	difficult				
mean 205.0	 224.00	difficult				
	201.00	normal				
	198.00	difficult				
	190.22	normal				
$M_{020} - 162.6$	169.00	normal				
Mean – 102.0	152.00	normal				
	147.00	normal				
	130.00	normal				
	129.02	difficult	short difficult	false positive	11	
	 123.00	normal	short unitcut	raise positive		
Lower 95% CLOT	110.00	difficult	short difficult	false positive		
	104.00	normal				
$m_{000} = 110.0$	101.00	normal				
mean = 119.9	99.60	difficult	short difficult	false positive		
	90.88	difficult	short difficult	false positive		
	82.00	normal				
	71.00	normal				
	70.00	normal				
	69.95	difficult	short difficult	false positive		
	68.00	normal				
	64.00	normal				
	64.00	normal		_		
	63.00	normal				
	60.00	normal		-		
	58.02	normal				

57.00 difficult

56.00

53.40

53.00 difficult

48.05 normal

48.00 normal

45.00 difficult

43.00 normal

42.75 normal

41.00 normal

40.00 difficult

39.42

39.00

39.00

39.00

38.00 normal

37.67 36.00 36.00 33.00 33.00 32.00

29.00

28.82 28.00 28.00 28.00 normal

normal

difficult

normal

normal

normal

short difficult

short difficult

short difficult

short difficult

short difficult

false positive

false positive

false positive

false positive

false positive

False negative; range 253 - 795

False positive; range 69 - 129

CSIRO

Conclusions

- Parturition length depends on breed
- Observed lambing ease doesn't match parturition length in all case
- More detailed annotation desirable
- Physiological parameters will help interpretation
- On our way to develop algorithm detecting lambing event

Jody McNally Heather Brewer Bryce Little Daniel Smith Aaron Ingham

Lea Labeur Guillaume Villiers Amellia Redfearn

Emma Doyle Rebecca Doyle

Thank you

Agriculture and Food

Sabine Schmoelzl

Team Leader | Animal Monitoring

- t +61 2 6776 1331
- e sabine.schmoelzl@csiro.au

ADD BUSINESS UNIT/FLAGSHIP NAME www.csiro.au

