69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

Finishing heavy boars for lower taint, suitable welfare and optimal performance

L. Martin¹, A. Frias¹, R.P.R. Da Costa¹, M.A.P. Conceição¹, R. Cordeiro² and A. Ramos¹

¹Inst Politec Coimbra, ESAC, DCZ, Bencanta, 3045-601 Coimbra, Portugal ²Uzaldo Lda., R. Balastreia 8, 3090-649 Figueira da Foz, Portugal

Presented by Luísa Martin

Introduction

Introduction Related Works Proposed Approach Experimental Details Results and Analysis Conclusions

Could heavy boars be profitable for producers?

Two main drawbacks, aggressive behaviour and boar taint

This study aims to assess two factors:

- \checkmark **Inulin** to reduce boar taint, dosage needs to be refined.
- Low stocking density and enriched environment to lower aggression

Towards a model to support pig farmers decision on finishing heavier male pigs

Related Works

Introduction **Related Works** Proposed Approach Experimental Details Results and Analysis Conclusions

Pigs+Care 3 years project for industry inovation between 3 companies and 2 R&I

- ✓ Study boar's behaviour, using video-monitoring (24hours.day⁻¹ with BORIS program)
- Look into indicators of stress and health status (cortisol levels and haematological parameters)
- ✓ Find new feeds and assess nutrient balances (N & P) to gain efficiency and reduce environmental impact at finishing
- ✓ Develop meat processing (mask boar taint...) and consumer studies (trained panel, acceptance of new products...)

Luísa Martin - EAAP 2018

Proposed Approach

Introduction Related Works **Proposed Approach** Experimental Details Results and Analysis Conclusions

Integrate methodology towards increasing boar finishing efficiency

Consider only natural methods without surgical or pharmacological procedures

Use of commercial pig units (instead of experimental) and give priority to promote farmers profitability

Promote animal welfare and environment awareness to pig farmers

Consider only natural methods without surgical or pharmacological procedures Use of commercial pig units (instead of experimental) and give priority to promote farmers profitability

Integrate methodology towards increasing boar finishing

Promote animal welfare and environment awareness to pig farmers

This study was funded by the FEDER and the Portuguese National Innovation Agency

Introduction Related Works **Proposed Approach** Experimental Details Results and Analysis Conclusions

Proposed Approach

efficiency

COMPETE

Project: POCI-01-0247-FEDER-017626.

- ✓ 60, 3-cross Pietrain x F1 (LR × LW) boars (114 kg ± 10) were randomly assigned to 6 pens
- \checkmark 3x2 factorial design:
 - -Three diets, with 0%, 3% and 6% of inulin -Two housing alternatives (Normal and Improved)
- ✓ 3 isoproteic (15.5% CP) and isoenergetic (2.3 Mcal NE) diets of 0, 3 and 6 % inulin, balanced for essential amino acids (NRC 2012).
- ✓ Pens with 1 or 1,9 m².pig⁻¹ (10 boars each).
- ✓ The lower density pens had 2 nipple drinkers instead of 1 and had 2 extra entertainment toys.

- A seven-week trial took place and measurements were taken through the trial and at slaughter.
- Blood was collected from the jugular vein into heparinized tubes at the beginning, middle and end of the trial and as well as at slaughter. Centrifuged and the plasma maintained at -80°C until further analysis.
- ✓ At the end of the trial boars were slaughtered at a commercial slaughterhouse following the standard EU procedures.
- ✓ Carcass yields (%C) as a % from live weight was assessed subsequently.

Introduction Related Works Proposed Approach **Experimental Details** Results and Analysis Conclusions

Procedure for sample preparation for plasma skatole and indole analysis by HPLC-FL (based on R. Claus *et al.*, 1993)

Introduction Related Works Proposed Approach **Experimental Details** Results and Analysis Conclusions

Skatole and Indole HPLC-FL (Gilson) system:

- ✓ RP-C18 column (5µm, 125mmx4.6mm) at 40 °C
- ✓ Isocratic gradient, flow rate 1 mL. min⁻¹
- ✓ Mobile phase water:acetonitrile:2-propanol (60:25:15)
- Excitation and detection wavelengths were set at 220nm and 271nm respectively
- ✓ Internal standard 2-methylindole (2MI)
- ✓ Interface software Gilson Unipoint

- ✓ STATISTICA software (2008, version 8; Stat Soft, Inc.) was the chosen program.
- Data was submitted to Kolmogorov–Smirnov and Levene's tests, to verify normal data distribution and homogeneity of variances, respectively.
- \checkmark Data was analysed by two-way factorial ANOVA.
- ✓ Post hoc Tukey's test was used when significant differences between means were detected.
- ✓ Significance differences were considered when p < 0.05.
- \checkmark Most of the results are presented as mean ± SD.

Results and Analysis

Every raw component of the mix was analyzed for inulin (AOAC 999.03)

The mix inulin content before and after pelleting was studied:

Introduction Related Works

Conclusions

Proposed Approach Experimental Details Results and Analysis

Feed	Inulin (%)
Fibrofos 60%	59.4
Weat grain	5.9
Wheat bran	5.4
Soya meal 47%	4.5
Rape meal	3.3
Barley grain	2.2
Sunflower meal	2
Corn grain	0.2
Pellet mix 0%	1.8
Pellet mix 3%	4.4
Pellet mix 6%	7.6

9/16

Diets	Before Fibrofos processing 60%		After processing	(A - B)	(A - C)	
	(A)	(B)	(C)			
0% Inulin	3.2	0	1.8	3.2	1.4	
3% Inulin	6.2	3	4.4	3.2	1.8	
6% Inulin	9.1	5.9	7.6	3.1	1.5	

Average intake 2.7 kg.day⁻¹ per pig. The feed cost was 0.21, 0.27 and 0.33 €.kg⁻¹ for 0, 3 and 6% inulin diet respectively

Luísa Martin - EAAP 2018

v = 0.8018x + 112.97

Results and Analysis

160

150

140

130

kg

Pigs were individually weighed at the beginning, middle and end of the trial.

Introduction

Conclusions

160

150

140

130

kg

v = 0.8419x + 114.18

 $R^2 = 0.9998$

Related Works

Proposed Approach Experimental Details Results and Analysis

The average final weight was 154 kg ± 12 with an average daily gain of 0.83 kg ± 0.2. Mean carcass yield was 74% ±4 and lean-meat 58% ±3 Wheigh gain Wheigh gain

 $= 0.7807 \times 114.78$

 $R^2 = 0.9991$

v = 0.8594x + 113.85

10/16

Results and Analysis

Related Works Proposed Approach Experimental Details **Results and Analysis** Conclusions

Introduction

Average daily weight gain (AWG) and carcass yield (%C)

Normal Housing				Improved Housing				Anova p-value		
	Control 2	6 6	Control	2	6	Diat	Housing	Diet		
	Control	3	0	Control	3	O	Diet	nousing	x Housing	
AWG	00+02	00 ± 0.2	00 + 0	00+0	00 + 01	00 + 02	0 220	0 601	0 709	
Kg.day-1	0.0 ± 0.2	0.9 I 0.2	0.9 ± 0	0.0 ± 0	0.0 1 0.1	0.9 ± 0.2	0.229	0.004	0.708	
% C	74 ± 1.2	73 ± 1.2	74 ± 1	74 ± 1	74 ± 1.2	72 ± 1.2	0.605	0.704	0.564	

Results are expressed as means \pm SD (n=10) measured in boars receiving control or supplemented diets (3 and 6 % inulin) for 48 days and housed at normal or improved density.

12/16

Results and Analysis

Introduction Related Works Proposed Approach Experimental Details **Results and Analysis** Conclusions

2.0

In loco individual body surface contaminated with faeces were assessed (Welfare Quality®-protocol) every 2 weeks using a score of 0 to 2 points as skatole and indole in manure can be absorbed through skin and lungs

Inulin	Belly manure	Face manure
0%	0.5 ± 0.3	0.6 ± 0.3
3%	0.8 ± 0.4	0.8 ± 0.6
6%	0.7 ± 0.4	0.8 ± 0.5

Face manure $y = 0.0002x^2 - 20.281x + 43$

Housing	Belly manure	Face manure
Normal	0.8 ± 0.3	1 ± 0.4
Improved	0.5 ± 0.3	0.5 ± 0.4

Luísa Martin - EAAP 2018

Luísa Martin - EAAP 2018

Results and Analysis

Introduction Related Works Proposed Approach Experimental Details **Results and Analysis** Conclusions

In loco individual skin wounds and scratches were assessed (Welfare Quality®-protocol) every 2 weeks and after slaughter using a score of 0 to 4 points proportional to the skin damage

Inulin	Skin lesions
0%	0.6 ± 0.5
3%	0.7 ± 0.6
6%	0.4 ± 0.6

Housing	Skin lesions
Normal	0.6 ± 0.5
Improved	0.6 ± 0.6

Results and Analysis

Introduction Related Works Proposed Approach Experimental Details **Results and Analysis** Conclusions

Plasma Cortisol levels (ng.mL⁻¹)measured with a competitive enzyme immunoassay kit (ENZO)

	Normal Housir	ng	Ir	Anova p-value				
Control	3	6	Control	3	6	Diet	Housing	Diet x Housing
80 ^a ± 17	70 ^{ab} ± 24	53 ^b ± 10	53 ^b ± 21	45 ^b ± 20	57 ^{ab} ± 23	0,176	0,004	0,027

Results are expressed as means \pm SD (n=10) measured in boars receiving control or supplemented diets (3 and 6 % inulin) for 48 days and housed at normal or improved density.

Initial average levels ranged 55,6 (\pm 26) ng.mL⁻¹.

Results and Analysis

Related Works Proposed Approach Experimental Details **Results and Analysis** Conclusions

Introduction

Plasma skatole and indole (ng.mL⁻¹) at 48 days of trial

	Normal Housing			Improved Housing			Anova p-value		
	Control	3	6	Control	3	6	Diet	Housing	Diet x Housing
Skatole	36 ^{ab} ± 7	12 ^a ± 7	19 ^a ± 7	53 ^b ± 7	32 ^{ab} ± 7	26 ^{ab} ± 7	0.003	0.012	0.594
Indole	21 ^c ± 6	9 ^{ab} ± 3	9 ^{ab} ± 3	19 ^{cb} ± 3	8 ^{ab} ± 3	5 ^a ± 2	0.003	0.418	0.905

Results are expressed as means \pm SD measured in boars receiving control or supplemented diets (3 and 6 % inulin) for 48 days and housed at normal or improved density.

Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**

Pelleting reduced 1.5% inulin on the mix

Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**

Pelleting reduced 1.5% inulin on the mix

Boar growth was not impaired by inulin or lower density pens

- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)

- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)
- Cortisol level was lower at improved housing

- Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**
- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)
- Cortisol level was lower at improved housing
- Skatole and Indole decreased with inulin but there was no difference between 3 and 6%

- Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**
- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)
- Cortisol level was lower at improved housing
- Skatole and Indole decreased with inulin but there was no difference between 3 and 6%
- Improved housing didn`t reduce boar taint

- Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**
- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)
- Cortisol level was lower at improved housing
- Skatole and Indole decreased with inulin but there was no difference between 3 and 6%
- Improved housing didn`t reduce boar taint
- The feed cost to raise a boar 40 kg (114 to 154 kg) at a 3% inulin diet was 35 euros

Introduction Related Works Proposed Approach Experimental Details Results and Analysis **Conclusions**

- Pelleting reduced 1.5% inulin on the mix
- Boar growth was not impaired by inulin or lower density pens
- Animal dirtiness was higher for higher stocking rates and higher intake of inulin (coincided with more liquid faeces)
- Cortisol level was lower at improved housing
- Skatole and Indole decreased with inulin but there was no difference between 3 and 6%
- Improved housing didn`t reduce boar taint
- The feed cost to raise a boar 40 kg (114 to 154 kg) at a 3% inulin diet was 35 euros

Thank You!