Pork production with immunocastration: welfare and environment

Volker Stefanski¹, Etienne Labussière², Sam Millet³, Ulrike Weiler¹

Challenge pork production

In the EU, about 75 % of male piglets are surgically castrated

Surgical castration serves to prevent off-odour in meat from male pigs, but causes strong public disapproval, as it is painful and considered a welfare problem

Pork production with entire males has long been regarded as an alternative, but problems with meat quality and welfare issues remain

→ Immunocastration (IC) could be a serious alternative with potential advantages on animal welfare, ecology and economy

Sustainable pork production with IC

- No painful castration, no climate-relevant gases (isoflurane anesthesia)
- 2. Less animal welfare problems
- 3. Feed efficient & potentially environmentally friendly
- 4. High meat quality, higher number of usable carcasses
- 5. Preconditions
 - optimization of the production process
 - confirmation of reliability ("non-responder")
 - consumer acceptance

ERA-Net SuSI addresses research gaps

Sustainability in pork production with immunocastration

→ Evaluation and optimization of pork production with immunocastration as an environmentally, economically and socially sustainable alternative

Aim of the talk

Impact of immunocastration (IC) on

- (1) welfare (behavior & health)
- (2) nutritional efficiency & environmental footprint

How does immunocastration work?

Vaccination with anti-GnRH vaccine (Improvac©)

Injection at two time points (V1 & V2)

Age in weeks

Effect of IC on welfare \rightarrow behavior & health

State of the art

- IC show less aggressive and sexual behavior than EM, e.g. Rydmer et al. 2010 (Sweden), Karaconji et al. 2015 (Australia), Puls et al. 2017 (USA)
- Penile injuries in entire males are abundant, e.g. Weiler et al. 2016

Research gaps

- IC behavior: Stability under varying / stressful housing conditions
- Effect on IC on penile injuries (and other health-related problems such as ulcers, leg problems)

Behavior of IC (SuSI project)

Social mixing

Preliminary data from SuSI project showing 50 % of the final data set

H-test with pairwise comparison (Bonferroni-corrected)

Immunocastrates vs. entire males

Less sexual behavior

Final analysis with full SuSI data set; further research

Health - Penile injuries in IC (SuSI project)

Data from SuSI project showing 50 % of the final data set

Kress et al. 2018

IC vs. entire males

Less frequent and less severe penile injuries

Nutritional efficiency & environmental footprint

State of the art

"In terms of feed consumption, immunocastrates can be considered boars until the second vaccination, after which their feed intake increases drastically" (Millet et al. 2018)

Research gaps

- Innovative feeding concepts
- Optimized feeding strategies to minimize environmental impact

Nutritional efficiency of IC

	Barrow	IC	Boar	r.s.d.	P-value
Daily gain, kg	0.72	0.72	0.72	0.07	0.987
Daily feed intake, kg	2.00 ^b	1.84 ^a	1.83 ^a	0.24	0.005
Gain: feed, g/g	0.36a	0.40^{b}	0.41 ^b	0.21	0.005
Carcass yield, %	78.9 ^b	77.2 ^a	77.9ª	1.2	<0.001
Lean meat, %	60.5ª	61.1 ^b	62.4 ^c	3.7	<0.001
Meat thickness, mm	66.7 ^b	66.6 ^b	64.9 ^a	7.5	<0.001
Fat thickness, mm	14.7 ^c	13.8 ^b	12.1 ^a	3.4	<0.001

 $^{
m abc}$ Within a row, means without a common superscript differ (P <0.05).

Aluwé et al., 2015

IC vs. barrows

Higher lean meat in %

Lower carcass yield = less feed per kg meat ?

Opportunities for optimisation, adjustment of diet after V2

Environmental footprint of IC

IC vs. barrows

- Lower carbon food print of the feed intake/ kg carcass weight
- Higher nitrogen efficiency
- IC are ecologically more efficient than barrows

But this may depend on the feeding startegy

> Opportunities for optimisation

Effect of IC on energy intake and nutrient deposition

Energy intake

Utilization of dietary amino acids

Effect of IC on energy intake and nutrient deposition

Optimized feeding of IC <u>until</u> second week after V2

Standard finishing diet for boars is adequate

- High protein deposition capacity (compared to castrates)
- Better feed conversion ratio (compared to castrates)

Optimized feeding of IC <u>after</u> second week after V2

- Protein content should be reduced to limit protein catabolism and spillage
- Reduces nitrogen excretion

Research gap

Possible interaction between feeding level and protein utilization

Opportunities in pork production with IC

Opportunities

- Welfare advantages of IC for animal-friendly pork production
- Exploit the ecological advantages of IC
- Exploit the economical advantages of IC

Current drawbacks

- > Research gaps with respect to optimized management (e.g. housing, feeding, reliability and time point of vaccination)
- Consumer and market reservations in some countries

Thanks to funders and partners

SuSI

Sustainability in Pork Production with Immunocastration

De Cuyper et al., 2018

Experimental design

- Two rounds: 384 experimental animals (96/sex)
- Danish sow x Belgian Piétrain sire
- 4 sexes: entire males (Em), barrows (Ba), immunocastrates (Ic) and gilts (Gi)
- Grouphousing: 4 animals (same sex) per pen
- Ad libitum feeding
- 3 phase feeding strategy, phase 3 adapted for barrows
- Desk study: hypothetical soybean-free feed for phase 3
- Start weight: 25kg
- Slaughter weight: 99kg 138kg

De Cuyper et al., 2018

 $CFP_{feed}/KG FEED X FEED INTAKE = CFP_{feed intake}$

CFP_{feed intake}/kg carcass weight

Van den Broeke et al., 2017

Experimental design

Start trial

72 pens of 4 piglets Same sex /pen

FM

Barrows

IC

Gilts

25 kg at start trial

During trial

Pigs fed *ad libitum*Multiphase feeding regime

Weekly weighing: Growth Feed intake Gain to feed ratio

Slaughter

3 slaughter weights

Van den Broeke et al., 2017

Nutrient content pig

Calculation of N- and P- efficiency

Nutrient efficiency = nutrient accretion / nutrient intake

Nutrient intake = feed ingested × nutrient content feed

Nutrient accretion = [mean bodyweight pen at slaughter × nutrient content pig]-[mean bodyweight pen at start × nutrient content piglet]