Pathogen-specific production losses in bovine mastitis

Anna-Maija Heikkilä and Eero Liski Natural Resources Institute Finland (Luke)

Satu Pyörälä and Suvi Taponen Faculty of Veterinary Medicine, University of Helsinki

EAAP 2018 Dubrovnik, Croatia, 27th to 31st August 2018

© Natural Resources Institute Finland

Background

- Mastitis results in substantial problems for animal welfare, food safety, and profitability of milk production
- The safety issues have become more and more important because of the fear over antimicrobial resistance
 - Increases the pressure to reduce antimicrobial drug usage
- Mastitis is the main reason for antimicrobial drug use for dairy cows
- The target is efficient and economic but also safe mastitis control
 - Pathogen-specific information is a prerequisite to provide tools and incentives for responsible mastitis control
 - Milk sampling!
- Long-term milk yield losses constitute a notable share of the economic losses attributable to mastitis

Aim of the study

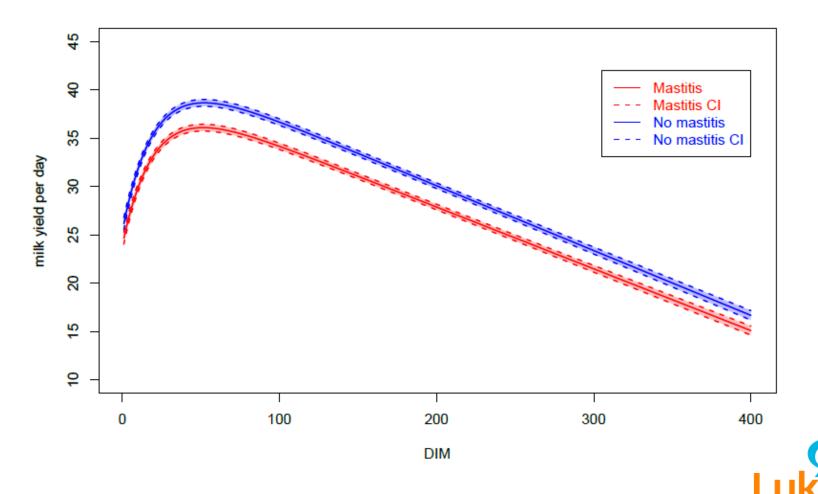
 To investigate pathogen-specific impacts of mastitis on milk production of dairy cows under farm conditions where current mastitis control practices are followed -> economic incentives for mastitis prevention

Data

- Cow-specific data from 20,234 dairy cows in 3,953 dairy farms during the years 2010, 2011, and 2012
- Milk and health recordings and microbiological diagnoses of mastitic quarter milk samples were merged for the investigation
- The six most common udder pathogens were included in the study
 - non-aureus staphylococci (NAS), 46.0%
 - Staphylococcus aureus, 25.5%
 - Streptococcus uberis,8.4%
 - Streptococcus dysgalactiae,7.9%
 - Corynebacterium bovis, 6.7%
 - Escherichia coli, 5.6%
- The information on lactation periods with and without mastitis was collected on the same cow
- The estimated lactation curves were adjusted to describe the cow's third lactation -> comparability of milk yields on lactations free of mastitis and with mastitis

Methods

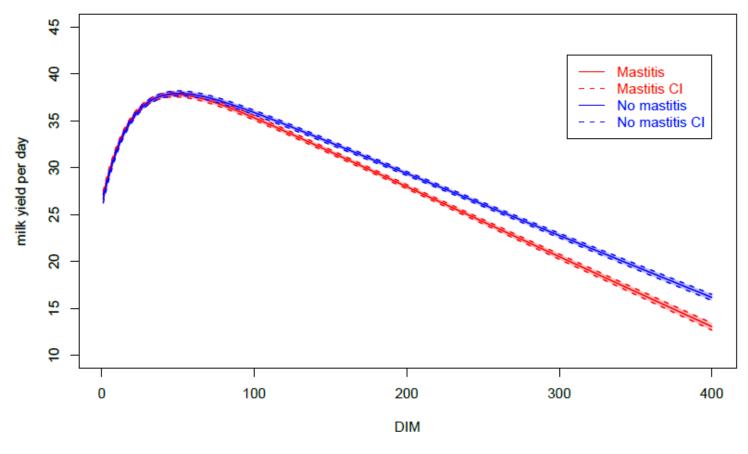
- A two-level (herd, cow) multilevel model was applied
- The model variables were
 - daily milk production (response)
 - time (DIM at which the milk yield was measured)
 - type of mastitis (categorical, two levels)
 - stage (DIM at which the pathogen was discovered in the milk sample; three levels)
 - pathogen (categorical, six levels)
 - dummy status predictor (lactation with or without mastitis)
- A model of a lactation curve was incorporated in the two-level multilevel model
 - a model proposed by Wilmink was chosen


$$y = \beta_0 + \beta_1 \exp(-k \times DIM) + \beta_2 DIM$$

• All the computations were performed with the R Software

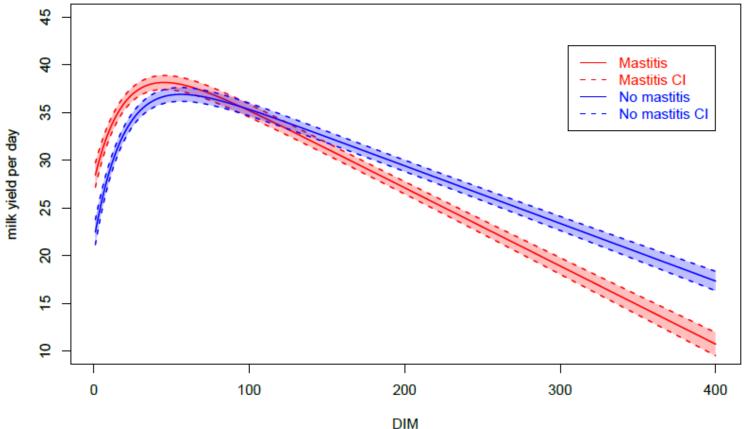
Lactation curves for a lactation free of mastitis and with mastitis due to *Staphylococcus aureus*

- Diagnosis at 1 - 53 DIM, clinical mastitis

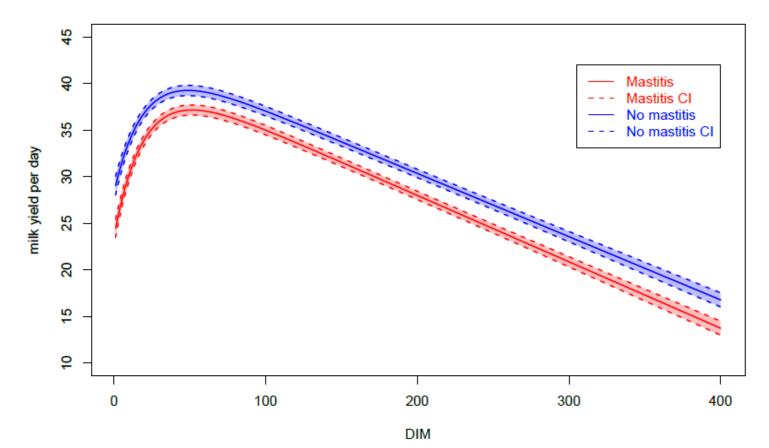


INSTITUTE FINLAND

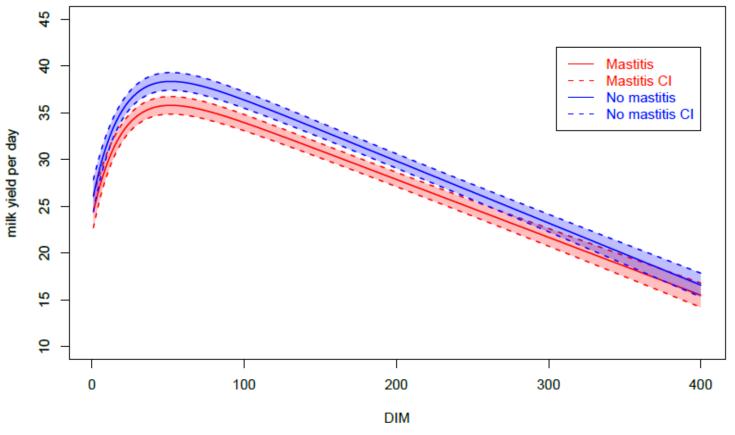
Lactation curves for a lactation free of mastitis and with mastitis due to non-*aureus* Staphylococci


- Diagnosis at 54 - 120 DIM, clinical mastitis

Lactation curves for a lactation free of mastitis and with mastitis due to *Escherichia coli*


- Diagnosis at 54 - 120 DIM, clinical mastitis

Lactation curves for a lactation free of mastitis and with mastitis due to *Corynebacterium bovis*


- Diagnosis at 54 - 120 DIM, clinical mastitis

Lactation curves for a lactation free of mastitis and with mastitis due to *Streptococcus uberis*

- Diagnosis at 1 - 53 DIM, subclinical mastitis

Pathogen	Significant difference in 305-d yield between lactations with and without mastitis		
Timing ¹ and	Milk yield loss,	Milk yield loss,	Milk yield loss,
type of mastitis ²	kg	%	kg/d
Staphylococcus aureus			
Pre peak CM	691	7.1	2.3
Pre peak SCM	674	7.1	2.2
Post 1 CM	423	4.3	1.4
Post 1 SCM	426	4.4	1.4
Non-aureus staphyloco	occi		
Pre peak CM	556	5.7	1.8
Post 1 CM	306	3.2	1.0
Escherichia coli			
Pre peak CM	1,053	10.6	3.5
Corynebacterium bovis			
Pre peak CM	731	7.4	2.4
Streptococcus uberis			
Pre peak SCM	645	6.6	2.1
Post 1 CM	407	4.2	1.3
Streptococcus dysgalactiae			
Pre peak CM	623	6.4	2.0
Post 1 CM	355	3.7	1.2

¹Pre peak = 1–53 DIM; post 1 = 54–120 DIM; post 2 = >120 DIM

²CM = clinical mastitis; SCM = subclinical mastitis

Conclusions

- The minor pathogens (NAS, *C. bovis*) should not be underrated as a cause of production losses
 - NAS are the most common pathogens detected in Finnish dairy herds
 - May cause clinical mastitis and, as such, production losses
- On single dairy farms, getting rid of environmental pathogen *E. coli* would bring a significant increase in milk production
 - Rare pathogen but cause significant production loss
- Reducing *Staph. aureus* mastitis is the biggest challenge for the Finnish dairy sector
 - Common pathogen which cause moderate production loss both as clinical and subclinical mastitis

Thank you

More information

 A.-M. Heikkilä, E. Liski, S. Pyörälä, and S. Taponen. 2018. Pathogen-specific production losses in bovine mastitis. Journal of Dairy Science 101 (in press). <u>https://doi.org/10.3168/jds.2018-14824</u>

Photo Erkki Oksanen

anna-maija.heikkila@luke.fi

