

EAAP 2018

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, Croatia, 27th to 31st August 2018

Climate change and animal disease: Vectors and vector borne pathogens in Croatia

<u>Relja Beck</u>, Tomislav Šarić, Sanja Bosnić, Renata Brezak

Croatian Veterinary Institute

Definitions

- A vector is an organism that does not cause disease itself, but spreads infection by conveying pathogens from one host to the other (mechanical, biological)
- A Vector Borne Disease (VBD) is one in which the pathogenic micro- organism is transmitted from an infected individual to another individual by an arthropod

Arthropods

- Metazoan invertebrate animals
- More than 1 million species
- More than 80% of all living species
- 39 000 species parasitizing humans, domestic and wildlife
- Able to transmitt pathogens

Changes in epidemiology of diseases

- Globalisation, animal and vector movement and trade
- Climate and atmospheric changes
- Habitat changes
- Adaptation of vectors and vector competence
- Increasing population of domestic animals and
- Wild animal protection
- Development of insecticide and drug resistance

We live in a global village

36 hours-two farthest points

Global traffic and disease vector dispersal

Andrew J. Tatem*^{†‡}, Simon I. Hay*[†], and David J. Rogers*

Rank	From	То	Ae. albopictus found?	Ae. albopictus established?
1	Chiba, Japan	New Orleans	Y	Y
2	Chiba, Japan	Genoa, Italy	Υ	Y
3	Chiba, Japan	Fraser, Canada	Ν	?
4	Chiba, Japan	Brisbane, Australia	Y	?
5	Chiba, Japan	Auckland	Y	?
6	Chiba, Japan	South Louisiana	Y	Y
7	Yokohama, Japan	Fraser, Canada	Ν	?
8	Kobe, Japan	Fraser, Canada	Ν	?
9	Chiba, Japan	Miami	Y	Y
10	Yokohama, Japan	Genoa, Italy	Y	Y
Air				
1	Tokyo Narita, Japan	Honolulu	Y	Y
2	Osaka Kansai, Japan	Honolulu	Y	Y
3	Nagoya, Japan	Honolulu	Y	Y
4	Tokyo Narita, Japan	Seattle	Y	?
5	Tokyo Narita, Japan	Brisbane, Australia	Y	?
6	Fukuoka, Japan	Honolulu	Y	Y
7	Seoul, South Korea	Honolulu	Y	Y
8	Tokyo Hareda, Japan	Honolulu	Y	Y
9	Taipei Chang, Taiwan	Seattle	Y	?
10	Tokyo Narita, Japan	Portland, OR	Y	?

Air results are exclusive of short-haul routes to Hong Kong; Sapporo, Japan; and Pyongyang, North Korea.

Aedes albopictus - current known distribution: January 2018

Habitat changes

Mosquitoes

- Mostly viruses- West Nile Virus, encephalitis viruses; LSD?
- Nematodes- *Dirofilaria* spp. and *Setaria* spp.

Vector borne emerging diseses

- They occur in areas where they have not been present
- Moving from South to North
- Often defined as Tropical
- Last epidemics / epizootic
 - Lumpy skin disease
 - Blue tongue disease

Biting midges (BTD)

- Culicoides is a genus of in the family Ceratopogonidae
- There are over 1350 species in the genus
- At least 117 in Europe
- Blutongue virus, Schmalenberg

Morphology- experts

Culicoides obsoletus

Culicoides scoticus

Indistinguishable- Obsoletus complex

National park Brijuni and Sultanate of Oman

• On 4 March 2010, ten individual oryx antelopes

Entomological survey of *Culicoides* biting midges

Insect samples were collected every second day until 5 April

None of the samples included insects of the genus *Culicoides*

One of the catches collected near to the sheep stables was identified as a vector of the Obsoletus Complex.

Animals were safely returned with army airplane on the 5. April

Ticks and animls

- Babesia canis canis
- Babesia canis vogeli
- Babesia gibsoni
- Babesia equi
- Babesia caballi
- Babesia microti
- Babesia sp. EU-1
- Babesia divergens
- Babesia crassa
- Theileria annae
- Theileria ovis
- Hepatozoon canis
- Acantocheilonema reconditum
- Borellia buradorferi s.s.
- Borellia garinii
- Borellia afzelii
- Anaplasma phagocytophilum
- Anaplasma platys
- Kickettsia conorii
- Rickettsia slovaca
- Rickettsia helvetica
- Rickettsia rhipicephali
- 🥻 Rickettsia aeschlimannii
- Rickettsia raolultii
- Rickettsia monacensis
- Rickettsia massilae
 - TBE virus

Rhipicephalus sp

Wolbachia sp.
Midychloria mitohondri
Anaplasma ovis
Theileria ovis
Babesia ovis
Babesia sp. Angola izolat
Rickettsia masillae
Hepatzoon felis
Hepatozoon canis

January 2017

Changes in ticks' seasonal activity

Anaplasmosis

Ixodes ricinus- Cres

Theileria cf. buffeti and Babesia sp. Angola Isolate

Ripicephalus sp. and Haemaphysalis

Babesia cf. crassa

Ripicephalus sanguineus sensu lato

R. sanguineus

R. turanicus

17 species within group

Hepatozoon canis- 11% of dogs in Croatia (PCR)

Hepatozoon canis- in foxes (40%)

To conclude

- Climate changes have influence on habitat change and vector spreading together with pathgens
- New vectors- new pathogens
- EU- lack of control between "borders"
- To expect new pathogens and their spreading
- Activity is not seasonal
- Free raising animals

 Continuous arthropod monitoring and control of vector populations remain essential for surveying and preventing VBD

