

EAAP - Dubrovnik, Croatia - September 2018

Improving livestock sustainability requires more than controlling its environmental footprint

Muriel Tichit & AnimalFuture consortium

E.O. Wilson's law

"If you save the living environment, the biodiversity that we have left, you will also automatically save the physical environment, too [...] But, if you only save the physical environment, you will ultimately lose both."

Source = Extract Interview NY times 2014

Outline

- Sustainability of what ? defining livestock farming systems
- What has changed across time?
- Important features to account in sustainability assessment

Livestock farming system = a scientific concept aimed at understanding the complex reality of husbandry

- Several interacting sub-systems
- Dynamic systems
- Operate at several nested levels : farm, landscape, region, nation...
- Food provision + multiple functions that are important to society

LFS made of three interacting sub-systems

Each sub-system has its own complexity due to many interdependencies

LFS are under the direct and indirect influence of a multitude of actors

The interplay between the different sub-systems determine the capacity of LFS to provide multiple functions

Livestock sustainability is about identifying the place of livestock in a sustainable food system

- Sustainability of what ? defining livestock farming systems
- What has changed across time?
- Important features to account in sustainability assessment

Current LFS are heterogeneous due to contrasted past intensification

Changes occurred both in supply and demand sides

Supply

- Animal productivity
- Resource use
- Labour productivity
- Input dependency
- Input/output price ratio
- Farmers value

. . .

Demand

- Diet / share of animal products
- Citizen expectations on animal welfare
- Citizen expectations environmental protection
- Consumer values
- Policy maker attention to these issues

Domingues et al. 2017 Animal

Each dot represents a land unit (France is divided into 94 NUTS3 land units)

LFS intensification btw 1938 and 2010 – France

Domingues et al. 2017 Animal

Domingues et al. 2017 Animal

23% of protein production on 27% UAA

Major changes in (1) labour productivity

Domingues et al. 2017 Animal

Major changes in (2) monogastric density

Domingues et al. 2017 Animal

Major changes in (3) milk productivity

Domingues et al. 2017 Animal

Major changes in (4) dependence to pruchased feed

Domingues et al. 2017 Animal

Past changes have led to contrasted bundle of services in 2010

- Sustainability of what ? defining livestock farming systems
- What has changed across time?
- Important features to account in sustainability assessment

Important features in sustainability assessment

- Sustainability is a multi level problem
- Multidimensional nature of LFS performance
- and their tradeoffs / synergies
- Irreversibilities
- . .

The research effort has concentrated on animal and farm levels

Summary of Nitrogen Use Efficiency % results found in the literature

	Animal level NUE		Farm and system level		Higher levels
	Range	References	Range	References	
Dairy cattle	15 to 35 ^b	[25,26,29, 51–57]	15 to 41 ^d 15 to 55 ^e	[2*,19,21**,29,30, 51,55,60,61*,62] [19,30,61*,62,65]	
Beef cattle	4 to 8 ^b	[51,66]	7 to 38 ^d 26-34°	[21**,67] [19]	7
Pig	10 to 44 ^b	[51,62,65]	50 ^d 41–45 ^e	[51] [18,20]	
Poultry	25 to 62 ^b	[51,62,65, 67–69]	39 ^d 35 to 48°	[69] [20]	
All species combined	7.1 to 10.5 ^b 74.1 ^c	[8*,70]	5 to 45°	[20,71]	

Source: Gerber et al. 2014

We need to understand how individual farms interact with other farms and up and downstream actors

We need to understand interdependencies btw regions

Farm sustainability is a necessary but not sufficient condition for regional sustainability

Sustainability is about multidimensionality we thus need to pay attention to tradeoffs

- Tradeoff occurs when there is a conflict between two objectives (A,B)
- On the tradeoff frontier, any improvement in objective A will lead to a decline in objective B
- The shape of the tradeoff curve informs on the severity of the conflict between the two objectives
- Essential to understand underlying drivers of tradeoffs

A multi level modelling framework for tradeoff analysis in grassland lanscapes

Tradeoff shape changes from one level to another

Sabatier et al. 2010 Ecol.Mod

Sabatier et al. 2014 Animal

Sabatier et al. 2013 Agric Syst

Levers for softening tradeoffs also changes from one level to another

Sabatier et al. 2010 Ecol.Mod

Sabatier et al. 2014 Animal

Sabatier et al. 2013 Agric Syst

Landscape heterogeneity can help acheiving win-no loss solutions

Sabatier et al. 2013 Agric Syst

At regional level, the allocation of farming intensity helps achieving win-no lose solutions

Three scenarios of farming intensity allocation

Methodological challenges

Difficult to define

- Multi-dimensional and multi-actor
- Livestock actors need to build a common view on what livestock sustainability means to them

Modelling tools are key

- Multiple interactions and drivers that are difficult to disantengle
- Tradeoff across levels
- Non linearities, uncertainties

In a nutshell

Livestock sustainability means the ability to understand intricacies of connected subsystems and from that understanding being able to take decision that will maintain LFS into a safe operating space

STEERING ANIMAL PRODUCTION SYSTEMS TOWARDS SUSTAINABLE FUTURE