
Pasture and manure management for sustainable dairy farming: a Life Cycle Assessment

Andreas D. Soteriades^{1,*}, A.M. Gonzalez-Mejia^{1,} D. Styles^{1,2}, A. Foskolos³, J.M. Moorby³ & J.M. Gibbons¹

¹ School of Natural Sciences, Bangor University, UK *a.d.soteriades@bangor.ac.uk

² Plant & Agri-BioSciences Centre, Ryan Institute, Ireland

³ IBERS, Aberystwyth University, UK

BSAS calls for secure funding for grassland farming research

Posted on July 19, 2018

Metrics and methods for characterizing dairy farm intensification using farm survey data

Alejandra Gonzalez-Mejia¹, David Styles¹, Paul Wilson², James Gibbons¹*

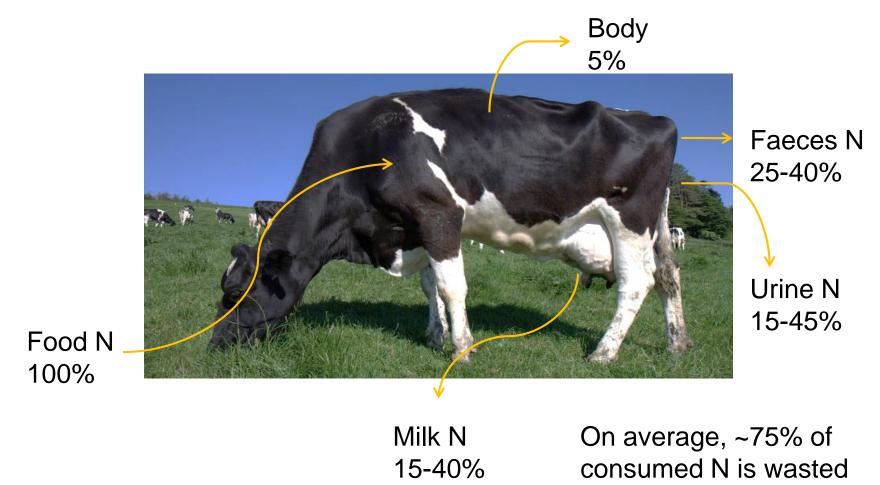
1 SENRGy, Bangor University, Bangor, United Kingdom, 2 School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom

* j.gibbons@bangor.ac.uk

Re-Thinking Organic Food and Farming in a Changing World pp 125-140 | Cite as

Increasing Demand for Pasture-Based Dairy: What Attributes and Images Do Consumers Want?

Authors Authors and affiliations

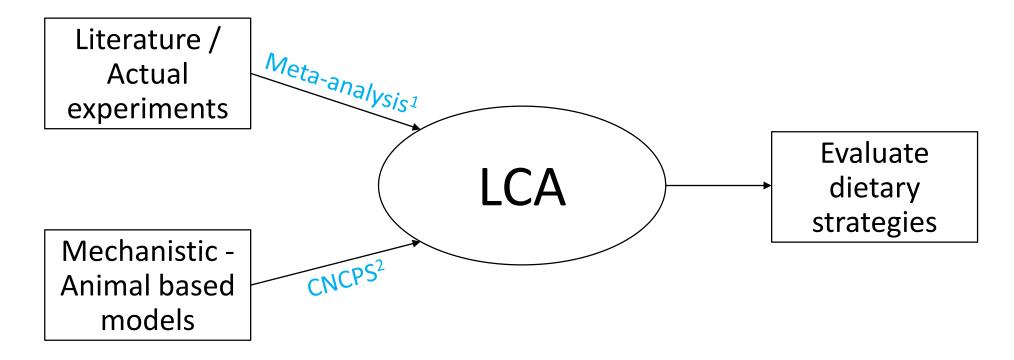

Kristin L. Getter 🖂 , Bridget K. Behe, Philip H. Howard, David S. Conner, Lia M. Spaniolo

Sources:

https://bsas.org.uk/about-bsas/news/bsas-calls-for-secure-funding-for-grassland-farming-research http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195286 https://link.springer.com/chapter/10.1007/978-94-017-9190-8 7

Nitrogen impacts of pasture based farms

Is there an easily-implementable and financially-viable way of reducing environmental impacts, while maintaining- or increasing- milk production levels, and without imposing drastic departures from widely-adopted dairy farming practices?


Is there an easily-implementable and financially-viable way of reducing environmental impacts, while maintaining- or increasing- milk production levels, and without imposing drastic departures from widely-adopted dairy farming practices?

Conventional perennial ryegrass versus

High-sugar grass

Sources:

¹ Foskolos & Moorby (2017). *Advances in Animal Biosciences* 8(1):72

² Van Amburgh et al. (2015). *Journal of Dairy Science* 98(9):6361–6380

Farm Description

- → Mixed pasture/indoor dairy system with a 6-month grazing period
- → Cows & heifers supplemented with concentrate (20 % of dry matter intake)

Item	HSG	CTR
Annual milk yield (L/cow)	6,874	6,437
Number dairy cows	132	
Number of heifers	11	8
Grazing area (ha)	6	5
Cut-grass area (ha)	40	O
Slurry storage system	Var	ied
Slurry spreading method	Var	ied

Source: Andreas Foskolos, Aberystwyth University

Lagoon

Tank (no crust)

Tank (crust)

-S

GWP

 $(kg CO_2 eq.)$

Sc-HSG

1.14

(1.15)

1.14

(1.15)

1.12

(1.13)

(5.31)

(5.06)

Sc-CTR

1.18

(1.19)

1.17

(1.18)

1.15

(1.16)

EΡ AΡ $(g PO_4 eq.)$ (g SO₂ eq.)Sc-CTR Sc-HSG Sc-CTR Sc-HSG 5.82 5.50 12.09 10.98 (12.86)(6.09)(5.73)(11.63)5.02 4.81 8.66 8.04 (5.40)(5.13)(8.94)(9.72)4.92 4.73 8.25 7.69

(9.35)

(8.62)

Results	GWP		EP		AP	
	(kg CO ₂ eq.)		(g PO ₄ eq.)		(g SO ₂ eq.)	
	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG
Lagoon	1.18	1.14	5.82	5.50	12.09	10.98
	(1.19)	(1.15)	(6.09)	(5.73)	(12.86)	(11.63)
Tank (no crust)	1.17	1.14	5.02	4.81	8.66	8.04
	(1.18)	(1.15)	(5.40)	(5.13)	(9.72)	(8.94)
Tank (crust)	1.15	1.12	4.92	4.73	8.25	7.69
	(1.16)	(1.13)	(5.31)	(5.06)	(9.35)	(8.62)

GWP

ΕP

AP

Results						
	(kg CO ₂ eq.)		(g PO ₄ eq.)		(g SO ₂ eq.)	
	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG
Lagoon	1.18	1.14	5.82	5.50	12.09	10.98
	(1.19)	(1.15)	(6.09)	(5.73)	(12.86)	(11.63)
Tank (no crust)	1.17	1.14	5.02	4.81	8.66	8.04
	(1.18)	(1.15)	(5.40)	(5.13)	(9.72)	(8.94)
Tank (crust)	1.15	1.12	4.92	4.73	8.25	7.69
	(1.16)	(1.13)	(5.31)	(5.06)	(9.35)	(8.62)

GWP -3% AP -10% EP -6% Results (kg CO₂ eq.) (g PO₄ eq.) (g SO₂ eq.)Sc-CTR Sc-HSG Sc-CTR Sc-HSG Sc-CTR Sc-HSG 1.18 1.14 5.82 5.50 12.09 10.98 Lagoon $(1.19) \longrightarrow (1.15)$ $(6.09) \longrightarrow (5.73)$ (12.86) (11.63)8.66 📄 8.04 1.17 1.14 5.02 4.81 Tank (no crust) $(1.18) \longrightarrow (1.15)$ (5.40) (5.13)(9.72) (8.94)1.15 1.12 4.92 4.73 8.25 7.69 Tank (crust) $(1.16) \longrightarrow (1.13)$ $(9.35) \implies (8.62)$ (5.31) (5.06)

GWP

ΕP

ΑP

	(kg CO ₂ eq.)		(g PO ₄ eq.)		(g SO ₂ eq.)	
	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG
Lagoon	1.18	1.14	5.82	5.50	12.09	10.98
	(1.19)	(1.15)	(6.09)	(5.73)	(12.86)	(11.63)
Tank (no crust)	1.17	1.14	5.02	4.81	8.66	8.04
	(1.18)	(1.15)	(5.40)	(5.13)	(9.72)	(8.94)
Tank (crust)	1.15	1.12	4.92	4.73	8.25	7.69
	(1.16)	(1.13)	(5.31)	(5.06)	(9.35)	(8.62)

arcs	(kg CC) ₂ eq.)	(g PO	₄ eq.)	(g SO ₂ eq.)	
	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG	Sc-CTR	Sc-HSG
Lagoon	1.18	1.14	5.82	5.50	12.09	10.98
	(1.19)	(1.15)	(6.09)	(5.73)	(12.86)	(11.63)
Tank (no crust)	1.17	1.14	5.02	4.81	8.66	8.04
	(1.18)	(1.15)	(5.40)	(5.13)	(9.72)	(8.94)
Tank (crust)	1.15	-6% 1.12	4.92	4.73	% 8.25	4-40% 7.69
	(1.16)	(1.13)	(5.31)	(5.06)	(9.35)	(8.62)

ΕP

ΑP

GWP

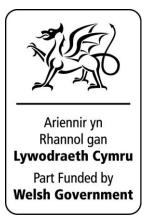
Conclusions

Simple land resowing may deliver substantial environmental gains Investment in more advanced manure management storage & spreading systems

Expensive, but:

Farmer training & financial aid Spill-overs

HSG cheaper, more attractive, short-term option?


Reference:

Soteriades, A.D.; Gonzalez-Mejia, A.M.; Styles, D.; Foskolos, A.; Moorby, J.M.; Gibbons, J.M. **in press**. Effects of high-sugar grasses and improved manure management on the environmental footprint of milk production at the farm level. *Journal of Cleaner Production*

Cyngor Cyllido Addysg Uwch Cymru Higher Education Funding Council for Wales

