Early-life programming effects on long-term productivity of dairy calves

Morteza H. Ghaffari

Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Germany

Developmental programming: The concept

Developmental programming involves a critical time window in early life

Factors involved in developmental programming?

Maternal status

Prenatal exposure to maternal metabolic stress

(Ling et al., JDS 2018)

Maternal nutrition and postnatal life

Maternal Diet

Energy density Rumen-protected methionine (RPM)

Organic trace minerals (ORG, Zn, Cu, Mn, and Co)

Control vs. RPM

ORG vs. Sulfate sources

↓ Birth weight

↓ Body height

↓ Body length

↓ T lymphocytes

↓ Total antioxidant capacity

(Gao et al, JDS 2012)

Maturation of hepatic gluconeogenesis

↑ Growth rates

↑ Wither height

Body weight

↑ Hip height

(Jacometo et al, JDS 2017) (Xu et al, JDS 2018) ↓ Oxidative stress
Status
Down-regulation of inflammatory mRNA and miRNA

(Jacometo et al, JDS 2015)

Postnatal

Role of Nutrition

□ Lactocrine hypothesis

Bartol et al., 2008

- Milk-borne bioactive factors (MbFs)
 - Immunoglobulin (Ig)
 - Bioactive peptide (Cytokines)
 - Lactoferrin
 - Hormones and growth factors, (IGF-I, EGF, TGF and relaxin)
 - Oligosaccharides
 - Immune-related miRNAs

Lactocrine hypothesis

Success of lactocrine signaling

Disruption of lactocrine signaling

Early Life Nutrition & Future Milk

Study (high vs. low milk)

Foldager et al., 1997
Bar-Peled et al., 1997
Ballard et al., 2005
Shamay et al., 2005
Pollard et al., 2007
Aikman et al. 2007
Raeth-Knight, 2009
Terré et al., 2009
Morrison et al., 2009
Davis-Rincker et al., 2011
Kiezebrink et al., 2015
Korst et al. 2017

Response (milk production)

+ 572 kg	NS
+ 454 kg	(p = 0.08)
+ 242 kg	NS
+ 132 kg	NS
+ 836 kg	NS
	NS
+ 718 kg	NS
+ 624 kg	NS
- 91 kg	NS
+ 416 kg	NS
- 25 kg	NS
+ 612 to + 725 kg	NS

Preweaning nutrient intake & mammary gland development

Item	Control	Enhanced	SE	P-value
Whole mammary gland, g	75.48	337.58	29.14	<0.01
Mammary gland as % of BW	0.12	0.41	0.03	<0.01
Mammary parenchyma, g	1.10	6.48	1.00	<0.01
Mammary parenchyma as % of BW	0.002	0.008	0.001	<0.01

Developmental programming of gut

Maternal heat stress and its long term effects

Take home messages

☐ Programming occurs in neonatal dairy calves and early life events have long-term effects on calf performance.
☐ Delivery of MBFs from cows to calves in early life plays a pivotal role in the programming of later life performance by affecting immune system maturation, and gut development
☐ Fetal gestation is a critical window of skeletal muscle development in ruminant and maternal under-nutrition would compromise postnatal birth weight and growth

Take home messages

☐ Preweaning plane of nutrition may altered programming of mammary gland development in dairy calves and can shift it to an allometric phase of growth ☐ There are multiple developmental windows for the small intestine during perinatal, and neonatal periods in dairy calves and programming of this plastic tissue seems to play a critical role in later growth, health, and performance ☐ Maternal heat stress or maternal under-nutrition may impact immune function and metabolism of dairy calves as well as future lactational performance.

Thank you for your attention

Types of epigenetic modifications