

Towards the quantitative characterization of piglets robustness to weaning: A modelling approach

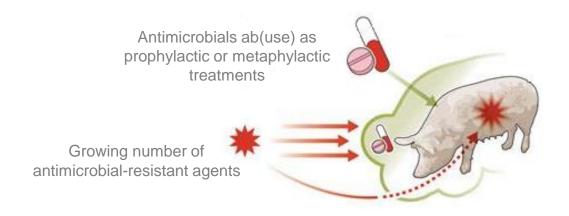
M. Revilla^{1,2}, N.C. Friggens², L.P. Broudiscou², G. Lemonnier¹, F. Blanc¹, L. Ravon³, M.J. Mercat⁴, Y. Billon³, C. Rogel-Gaillard¹, N. Le Floch⁵, J. Estellé¹ and R. Muñoz-Tamayo²

- ¹ UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- ² UMR MoSAR, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
- ³ UE GenESI, INRA, Surgères, France
- ⁴ IFIP-Institut du porc and Alliance R&D, Le Rheu, France
- ⁵ UMR PEGASE, INRA, AgroCampus Ouest, Saint-Gilles, France

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, CROATIA August, 27th – 31st 2018

Weaning: a critical period

- Weaning is one of the most critical phases in modern swine breeding conditions¹
- Practice at around 3-4 weeks of age. Natural weaning occurs around 17 weeks after birth²



Weaning: a critical period

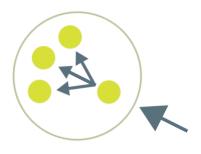
- Weaning is a sudden, stressful, short, and complex event characterized by changes in diet, social, and environmental life conditions³
- Multiple stressors inducing: anorexia, intestinal inflammation, unbalanced gut microbiota...⁴

³ Campbell et al.: J Anim Sci Biotechnol. 2013, 4:19.

⁴ Pié et al.: J Nutr. 2014, 134:641-647.

Weaning: assistance health and management

- Increasing interest of developing tools for assisting health and management decisions around weaning
- It is key to provide robustness indexes that inform on the animal resilience to weaning



Introduction

Robustness concept

- A new crucial goal in breeding strategies
- Definition: Capacity to maintain productivity in a wide range of environments without compromising reproduction, health, and wellbeing⁵

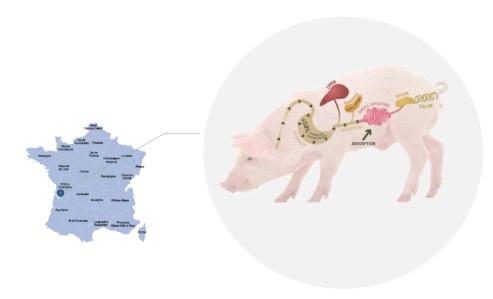
- Elements of robustness:
 - The potential to keep functioning (resistance) and take short periods to recover (resilience) under varying environmental conditions⁶
- Multi-trait index, according to their fitness value in a given environment and production system

⁵ Friggens *et al.*: *Animal* 2017, 11:2237-2251.

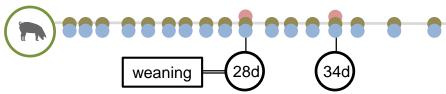
⁶ Star et al.: J Agric Environ Ethics 2008, 21:109-125.

our aim

Develop a modelling approach for facilitating the quantification of piglet resilience/robustness at weaning


our **material**Using an experimental Large White population

our strategy


Construct a perturbed model in order to provide biological parameters that inform on the amplitude and length of the perturbation

Experimental population

INRA's Le Magneraud experimental unit

- 325 Large White pigs
 - Without antibiotic administration
 - Conventionally housed and fed during the post-weaning period
- Recorded traits
 - Body weight measurements
 - Diarrhoea score (0, 1, 2)
 - Health status measurements

Mathematical model approach

Perturbed model

Gompertz-Makeham equation

Normalized Error function (i)

$$Error value = \left(\frac{W - Wd}{W_d}\right)^2$$
 (i)

Where W_d represented the weight data (kg) and W the weight predicted by the model

Error weighted with respect to the size of the registers for each animal (ii)

$$J = \frac{sum (Error value)}{length (t)}$$
 (ii)

⁷ https://www.scilab.org/.

Mathematical model approach: A perturbed model

- Dynamic model based on the Gompertz-Makeham law⁸ (iii, iv)
 - Describe live weight during the first 75 days after weaning
 - Animal response to the perturbation partitioned in two time windows:
 - perturbed / recovery window
 - Individual specific transition time between windows

Gompertz-Makeham law is an extension of the Gompertz model to consider the effect of a disturbing environment

⁸ Golubev: *J Theor Biol.* 2009, 258:1-17.

Mathematical model approach: A perturbed model

Dynamic of weight of piglets represented by two ordinary differential equations (iii, iv) based on **Gompertz-Makeham law**

$$dW/dt = W * (-C + \mu)$$
 (iii)

$$d\,\mu/d\,t = -D * \mu \tag{iv}$$

Where W (kg) is the weight, μ (1/d) is the specific growth rate, D (1/d) is a developmental parameter and C (1/h) is a parameter representing the effect of the environment on the weight

Mathematical model approach: A perturbed model

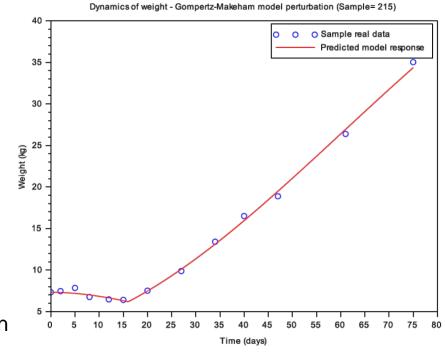
To represent the moment at which the animal is perturbed and the moment at which it recovers from the perturbation, we assumed **two time windows**. Mathematically modelled in the parameter *C*

$$C > 0$$
 if $t \le t_s$

$$C = 0$$
 if $t > t_s$

Where t_s is the time of switch and is assumed to be specific for each animal

Perturbed model: parameters


Gompertz-Makeham law consider the effect of a disturbing environment (weaning)

Parameters

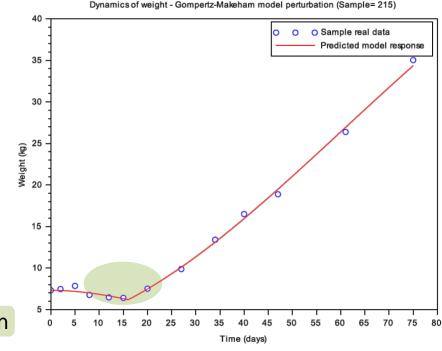
Model Error. Level of fitting of the model

C: Discriminative of the level of perturbation

 t_s : Indicates the moment at which the animal recovers from the perturbation

|Figure 1| Dynamics of weight using perturbed Gompertz-Makeham law

Perturbed model: parameters


Gompertz-Makeham law consider the effect of a disturbing environment (weaning)

Parameters

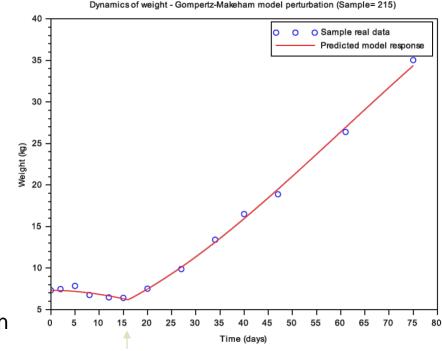
Model Error. Level of fitting of the model

C: Discriminative of the level of perturbation

 t_s : Indicates the moment at which the animal recovers from the perturbation

|Figure 1| Dynamics of weight using perturbed Gompertz-Makeham law

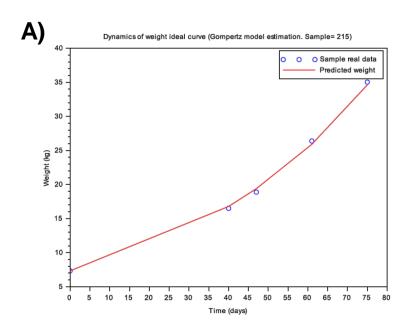
Perturbed model: parameters

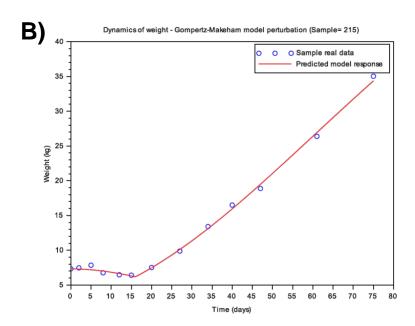

Gompertz-Makeham law consider the effect of a disturbing environment (weaning)

Parameters

Model Error. Level of fitting of the model

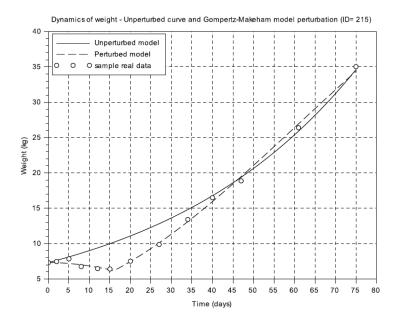
C: Discriminative of the level of perturbation


 t_s : Indicates the moment at which the animal recovers from the perturbation



|Figure 1| Dynamics of weight using perturbed Gompertz-Makeham law

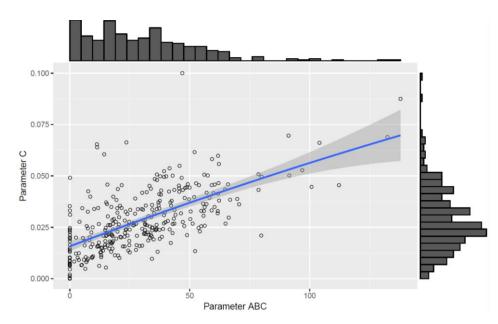
Theoretical growth rate curve (Unperturbed) and Gompertz-Makeham model (Perturbed)



|Figure 2| Example of the dynamics of weight for one animal (sample= 215). A) Theoretical growth rate curve (Unperturbed) using Gompertz equation. B) Predicted response using Gompertz-Makeham law (Perturbed)

Area between curves (ABC) parameter

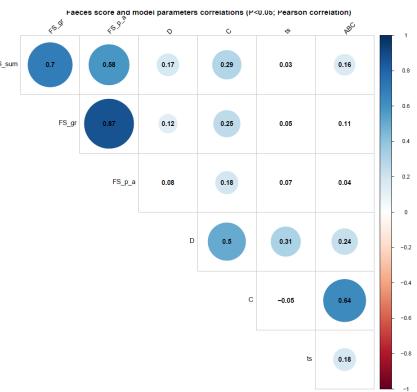
- The area between curves (ABC)
 parameter is an index that balances
 goodness of fitting of the model
- Robustness index
- Inform on the animal capabilities in terms on the amplitude and length of perturbation, and the rate of animal recovery



|Figure 3| Comparison of the weight dynamics as predicted by the unperturbed and the Gompertz-Makeman (perturbed) models. ID= 215 is represented

Perturbed model: parameters correlation

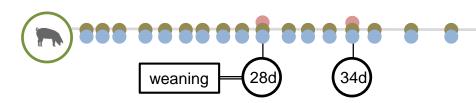
- High positive correlation
 (r= 0.64; p-value= 3.34x10⁻¹⁷)
 between Parameter C and
 Parameter ABC
- High proportion of animals with a moderate degree of perturbation



|**Figure 4**| Scatter plot with marginal histograms illustrating the relationship between: Parameter *C* and Parameter *ABC*

Correlation analyses: Faeces Score

- The Model Parameters and Faeces
 Score correlations revealed
 significant positive associations
- Faeces Score data:
 - FS_sum: Number of diarrhoea measurements, corrected by number of observations per each animal
 - FS_group (3 levels):
 - 0: No diarrhoea observation
 - 1: One diarrhoea register
 - 2: Two or more diarrhoea registers
 - FS_p_a (2 levels): Presence/absence



|Figure 5| Correlations among Model Parameters and Faeces Score data

Correlation analyses: Health status measurements

 The Model Parameters and health status measurements revealed significant associations

Date Measurements	Model Parameter	Health status measures	Correlation	Bibliography
28d	ABC	Hematocrit (Hct)	-0.38***	High association with average daily gain in the three weeks post-weaning9
		Hemoglobin (Hgb)	-0.32***	
34d	ABC	Monocytes (Mon)	-0.30***	Estimator of the animal health status ¹⁰

⁹ Bhattarai & Nielsen: *Livest Sci.* 2015. 182:64-68.

¹⁰ Chamorro et al.: Immunology 2005, 114:63-71.

Conclusions

- We have create an animal ranking with respect to the distance between the population data and the model
- This work provides biological parameters derived by modelling piglet body weight trajectories from weaning
- These parameters inform on the amplitude and length of perturbation, and the rate of animal recovery
- We have identified significant correlations between the model parameters index and individual diarrhoea scores and health status measurements

This study has been supported by

With the collaboration of

UMR MoSAR

N.C. Friggens

L.P. Broudiscou

R. Muñoz-Tamayo

UE GenESI

L. Ravon

Y. Billon

IFIP-Institut du porc and Alliance R&D

M.J. Mercat

UMR PEGASE

N. Le Floch

UMR GABI

G. Lemonnier

F. Blanc

C. Rogel-Gaillard

J. Estellé

Manuel Revilla, PhD

- ¹ UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- ² UMR MoSAR, INRA, AgroParisTech, Université Paris-Saclay, Paris, France

Towards the quantitative characterization of piglets robustness to weaning: A modelling approach

M. Revilla^{1,2}, N.C. Friggens², L.P. Broudiscou², G. Lemonnier¹, F. Blanc¹, L. Ravon³, M.J. Mercat⁴, Y. Billon³, C. Rogel-Gaillard¹, N. Le Floch⁵, J. Estellé¹ and R. Muñoz-Tamayo²

- ¹ UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- ² UMR MoSAR, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
- ³ UE GenESI, INRA, Surgères, France
- ⁴ IFIP-Institut du porc and Alliance R&D, Le Rheu, France
- ⁵ UMR PEGASE, INRA, AgroCampus Ouest, Saint-Gilles, France

69th Annual Meeting of the European Federation of Animal Science Dubrovnik, CROATIA August, 27th – 31st 2018