Global worming in the dairy aspect

Sensor base cooling reduced heat stress in dairy cows

Harel Levit, Shlomi Goldshtein, Yehoshav Ben Meir, Alona Kleinjan-Elazary, Eran Gershon, Severino Pinto Joshuah Miron, Ilan Halachmi

Agenda:

- 1. Project goals
- 2. Background
- 3. Sensor base cooling results
- 4. Conclusions and discussion

Project goals:

- Study the individual cow heat stress response sensor based
- 2. Transforming rumen temperature to vaginal temperature (**Statistic model**)
- Design sensor base cooling method for **forcedcooling** purposes (production/welfare)

1.Temperature-

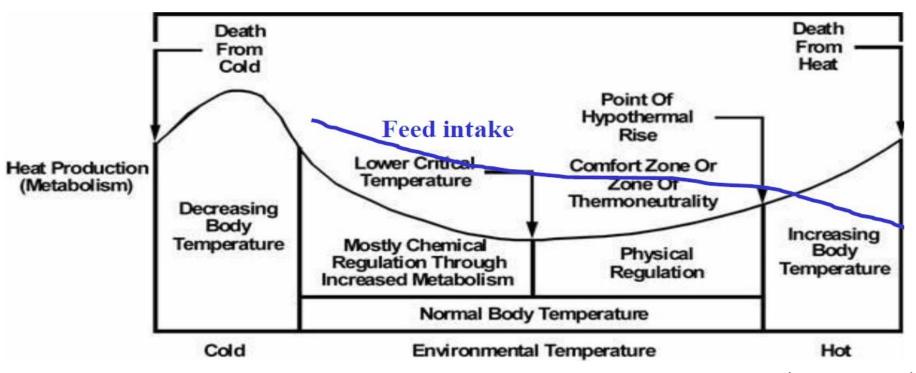
humidity index standard for external heat stress. (Zimbleman et al. 2011).

Themp	erature	e % Relative Humidity																		
°F	°c	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
72	22.0	64	65	65	65	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71
73	23.0	65	65	55	85	66	67	67	68	68	68	69	69	70	70	71	71	71	72	72
74	23.5	65	66		65 65 67	67	67	68	68	69	69	70	70	70	71	71	72	72	73	73
75	24.0	66	70	67	67	68	68	68	69	69	70	70	71	71	72	72	73	73	74	74
76	24.5	66	67	67	68	68	69	69	70	70	71	71	72	72	73	73	74	74	75	75
77	25.0	67	67	68	68	69	(B)	70	70	71	71	72	72	73	73	74	74	75	75	76
78	25.5	67	68	68	69	69	70	70	71	71	72	73	73	74	74	75	75	76	76	77
79	26.0	67	68	69	60	70	70	71	71	72	73	73	74	74	75	76	76	77	77	78
80	26.5	68	69	63	70	70 70	71	72	72	73	73	74	75	75	76	76	77	78	78	79
81	27.0	68	69	70	70	71	72	72	73	73	74	75	75	76	77	77	78	78	79	80
82	28.0	69	69	70	71	71	72	73	73	74	-5	75	76	77	77	78	79	79	80	81
83	28.5	69	70	71	71	72	73	73	74	3	75	76	77	78	78	79	80	80	81	82
84	29.0	70	70	71	72	73	73	74	76	75	76	77	78	78	79	80	80	81	82	83
85	29.5	70	71	72	72	73	74	.ZA	0 5	76	77	78	78	79	80	81	81	82	83	84
86	30.0	71	71	72	73	74	74	U_{22}	76	77	78	78	79	80	81	81	82	83	84	84
87	30.5	71	72	73	73	74	75	76	77	77	78	79	80	81	81	82	83	84	85	85
88	31.0	72	72	73	74	75	76	76	77	78	79	80	81	81	82	83	84	85	86	86
89	31.5	72	73	74	75	75	76	77	78	79	80	80	81	82	83	84	85	86	86	87
90	32.0	72	73	74	75	76	77	78	79	79	80	81	82	83	84	85	86	86	87	88
91	33.0	73	74	75	76	76	77	78	79	80	81	82	83	ės	85	86	86	87	88	89
92	33.5	73	74	75	76	77	78	79	80	81	82	83	E4	(6)	85	86	87	88	89	90
93	34.0	74	75	76	77	78	79	80	80	81	82	83	Š	85	86	87	88	89	90	91
94	34.5	74	75	76	77	78	79	80	81	82	83	346	86	86	87	88	89	90	91	92
95	35.0	75	76	77	78	79	80	81	82	83	84	رە	86	87	88	89	90	91	92	93
96	35.5	75	76	77	78	79	80	81	82	83	ze	86	87	88	89	90	91	92	93	94
97	36.0	76	77	78	79	80	81	82	83	VO	285	86	87	88	89	91	92	93	94	95
98	36.5	76	77	78	80	80	82	83	83	110	86	87	88	89	90	91	92	5 ⁹³	94	95
99	37.0	76	78	79	80	81	82	83	84	85	87	88	89	90	91	92	es	24	95	96
100	38.0	77	78	79	81	82	83	84	85	86	87	88	90	91	92	93	(6)	95	96	98
101	38.5	77	79	80	81	82	83	84	86	87	88	89	90	92	93	, 5	95	96	98	99
102	39.0	78	79	80	82	83	84	85	86	87	89	90	91	92	ele	95	96	97	98	100
103	39.5	78	79	81	82	83	84	86	87	88	89	91	92	ev	24	96	97	98	99	101
104	40.0	79	80	81	83	84	85	86	88	89	90	91	93	,	95	96	98	99	100	101
105	40.5	79	80	82	83	84	86	87	88	89	91	92	93	95	96	97	99	100	101	102
106	41.0	80	81	82	84	85	87	88	89	90	91	93	94	95	97	98	99	101	102	103
107	41.5	80	81	83	84	85	87	88	89	91	92	94	95	96	98	99	100	102	103	104

2. Body temperature increase due to hyperthermia.

(D.T. Beatty et al. 2008).

Our threshold:


- 1.Body temperature over 39°C
- 2. Respiration over 80 per min

3. Feeding duration and DMI decreases in order to maintain normal thermoregulation. (Tian et al. 2016).

(Curtis, 1981)

Cooling management in Israel

- 1. Base on environmental temperature (THI)
- 2. Normal routine- time base (3-8)

Sev

Materials and Methods

erature, HRV

2016: 8 cooling vs. 5 cooling per day

2017: Sensor-based cooling vs. pre-defined cooling (3 cooling)

1. ARO, Volcani, research dairy barn

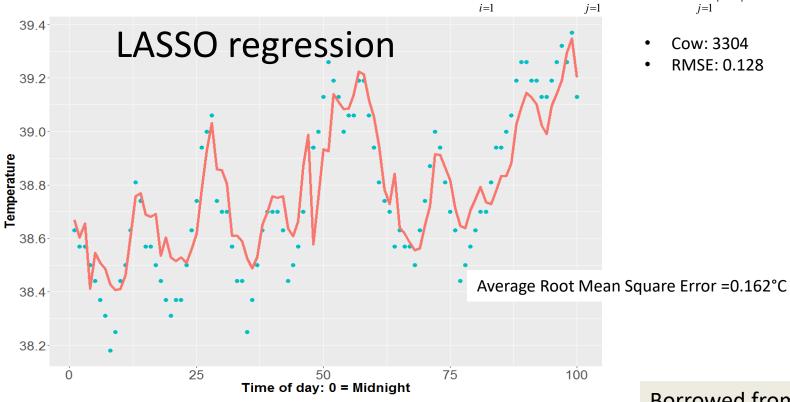
2. (2016) 24 Holstein cows, 14 days (2017) 4 Holstein cows, 3 months,

Run
Vag
Eati
The

x 9 times 45 min
Project Bar
Our Jature...
tion, wind).

Cooling session:

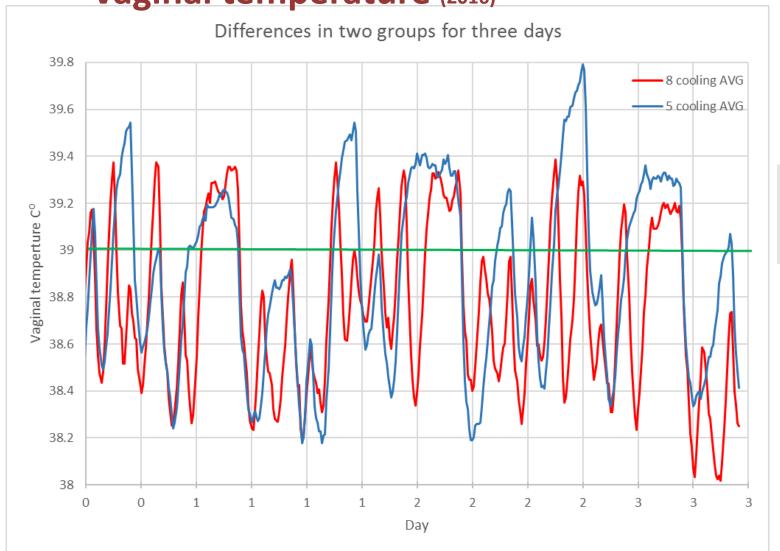
1 min. shower and 4 min. fan



Materials and methods – algorithm (2016)

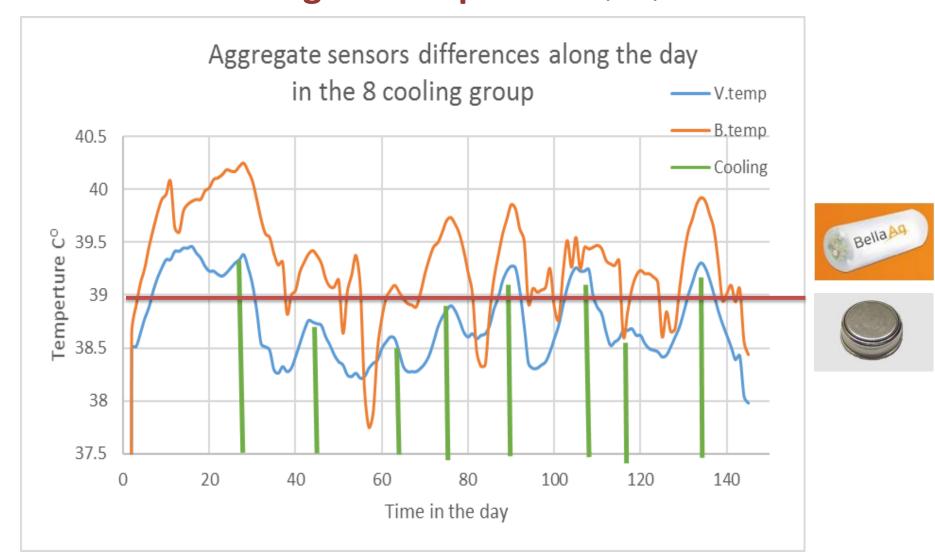
How to "exchange" vaginal with bolus temperatures?

$$\sum_{i=1}^{n} [y_i - (\beta_0 + \sum_{i=1}^{k} \beta_j x_{ij})]^2 + \lambda \sum_{i=1}^{k} |\beta_j| = ||\mathbf{Y} - \mathbf{X}\mathbf{\beta}||_2^2 + \lambda ||\mathbf{\beta}||_1$$

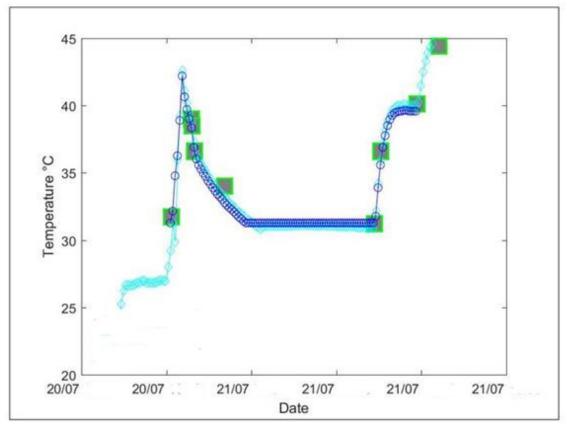

colour - Predictions - Vaginal Temperature

Borrowed from
Shlomi Goldshtain
Master work

Materials and methods: Vaginal temperature (2016)

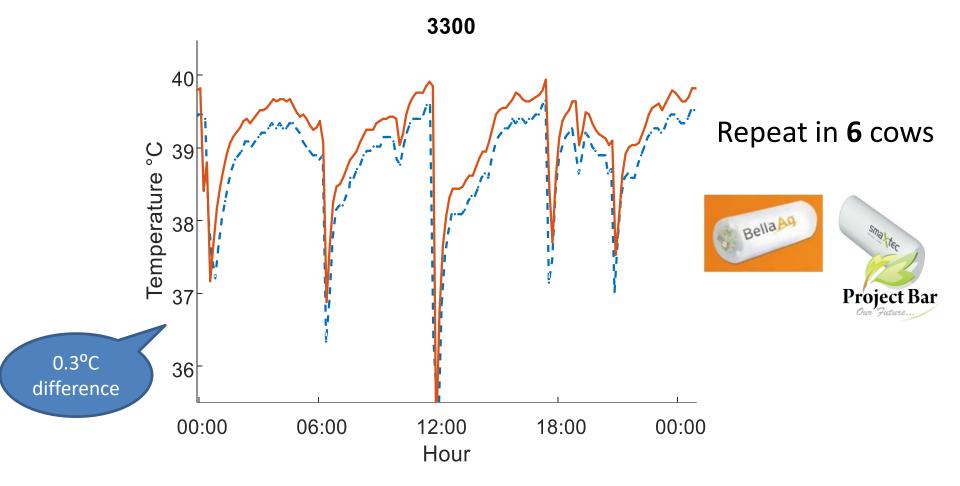


Materials and methods: Rumen VS vaginal temperature (2016)

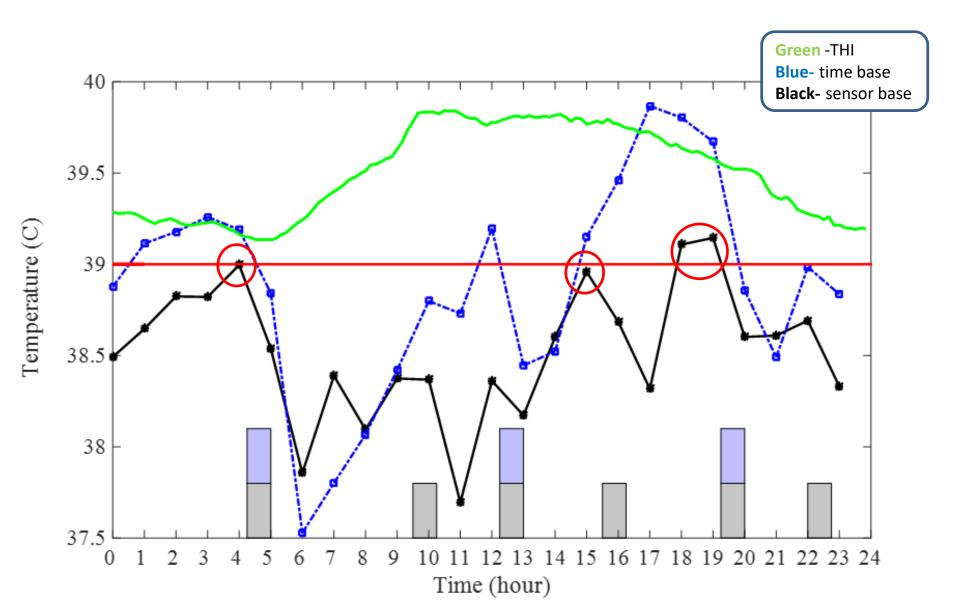


Materials and Methods sensor validation

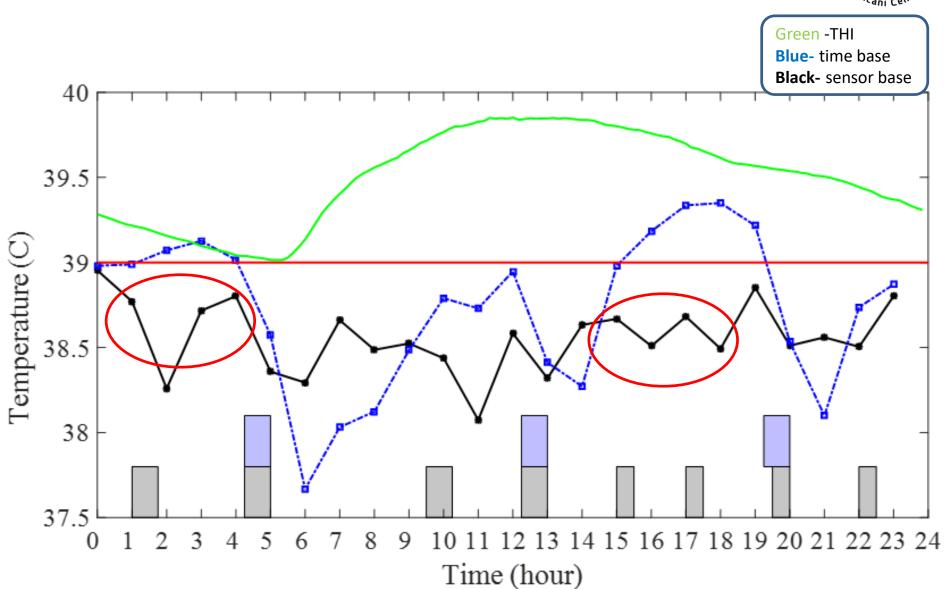
Two different manufactures - in the lab



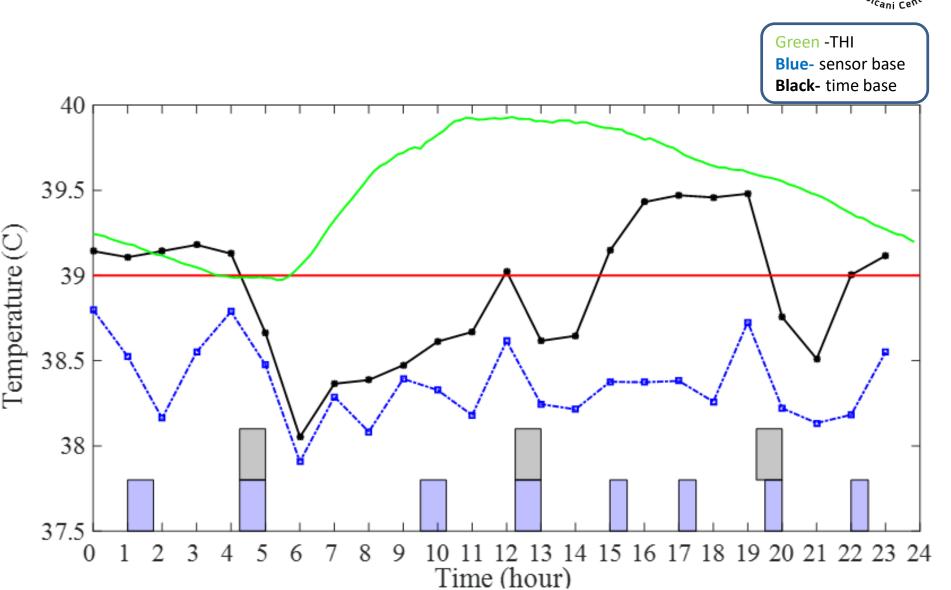
Materials and Methods sensor validation


Two different bolus manufactures in a one single cow

Result: Animal response to sensor-based cooling changes (2017)



The preferred sensor-based cooling regime (2017)



Animal response to <u>crossover</u> experiment (2017)

Production performance

	TB	SB		Olcani
Trait	(3 cooling)	(8 cooling)	SEM	p
Milk, kg/d	44.7	44.7	0.37	0.99
Milk Fat, %	3.46	3.72	0.01	0.001
Milk Protein, %	3.15	3.26	10.0	0.001
Milk Lactose, %	4.89	4.83	0.01	0.001
ECM, kg/d	41.3	42.8	0.30	0.001
FCM 4%, kg/d	41.0	42.7	0.30	0.001
ECM/DMI	1.59	1.53	0.01	0.001
RFI, kg DM/d	1.03	1.03	0.01	0.93
N	15	15		

Milk solids (fat, protein) were more affected then the milk volume

Feeding behavior and welfare

	TB	SB		Colcani Cen
Trait (3 cooling)	(8 cooling)	SEM	p
DMI, kg/d	26.4	28.4	0.19	0.001
Eating rate, g DM/min.	131.6	142.6	1.72	0.001
Eating time, min.	/d 200.6	199.1	2.46	0.112
Valid visits/d	9.31	7.69	0.06	0.001
Visit duration, mi	<u>n.</u> 23.7	28.1	0.33	0.001
Visit size, kg DM	2.83	3.80	0.05	0.001
Lying, Min./d	558.8	563.9	6.74	0.598
Pedometer, Steps	/h 97.9	136.5	2.46	0.001
Body Weight, kg	639.6	656.4	2.54	0.001
Rumination, min.	<u>/d</u> 393.4	487.6	95.4	0.001

Conclusion Exp. 2017:

Higher feed consumption

- Change in eating behavior
- Change in production

 Better thermoregulation (Av. 38.6°C)

Effective tool to manage the dairy's cooling regime and ease cow's heat stress.

Acknowledgment:

- This experiment was funded by the EU
 OptiBarn project and the Israeli Dairy Board.
- I thank ARO dairy team for their help.
- I thank SmaxTect ProjectBar for the boluses.

For further information:

Harel Levit

harelle@volcani.agri.gov.il

Prof. Ilan Halachmi

halachmi@volcani.agri.gov.il

Discussion

