

Università degli Studi di Padova

Milk and cheese authentication using FTIR, NIR spectra, fatty acid, and volatile organic compounds

M. Bergamaschi*, A. Cecchinato, G. Bittante

DAFNAE Department, University of Padova, Legnaro (PD), Italy <u>*matteo.bergamaschi@unipd.it</u>

EAAP 69th, Annual Meeting, Dubrovnik, Croatia, 2018

- Consumers are nowadays demanding transparency \bullet about the origin of foods
- Several sources of information have been used to authenticate dairy products
- The reference methods of analysis are expensive and not easily adapted to on line monitoring on a large scale
- The new challenge is to develop rapid and low-cost screening techniques to authenticate dairy products with characteristics that meet consumer expectations

Università degli Studi di Padova

The aim of this work was

to compare different sources of information for

discriminating milk and cheese derived from

different dairy systems

Data collection - Cowability Project

• A total of 1,274 milk samples were transformed to 1,274 individual cheeses

Università

degli Studi di Padova

• 85 herds belonging to 5 different farming systems from traditional to intensive ones (Sturaro et al., 2013 Livest Sci)

- 15 Italian Brown Swiss cows from each herd were individually sampled once (2 L per cow) during evening milking
- The model cheeses were ripened for 60 days ripening at 15 °C and 85% R. H.

Methods

- Fourier Transform Infrared Spectroscopy (FTIR) (Milkoscan FT 6000, Foss) 1,060 single bands, 2,000 to 10,800 nm (Ferragina et al. 2015, JDS)
- Milk Fatty Acids (FA) (ThermoQuest GC,ThermoElectron Corp) 47 individual fatty acids (Mele et al. 2016, JDS)
- Near Infrared Spectroscopy (NIR) (Foodscan, Foss) 100 single bands, 850 to 1,050 nm
- Proton Transfer Reaction-Time of Flight-Mass Spectrometry (VOC) (PTR-ToF-MS 8000, Ionicon Analytik) 619 spectrometric peaks, 240 Volatile Organic Compounds (Bergamaschi et al. 2015, JDS)

UNIVERSITÀ

degli Studi di Padova

- Università degli Studi di Padova
- LDA to test the hypothesis of whether K groups can be reconstructed based on the set of P predictors
- R software (MASS package)

Predictors: FTIR spectra (1,060 waves)

FA (47 fatty acids)

NIR spectra (100 waves)

VOCs (240 compounds)

Groups: different dairy systems (3 or 5)

75% training, 25% testing data set, 10-fold cross-validation

Università degli Studi di Padova

Methods		n	Training	Testing
3 dairy systems:				
FTIR	Milk	1,222	97	74
FA	Milk	1,175	81	77
FTIR+FA	Milk	1,130	99	78
NIR	Cheese	903	76	67
VOC	Cheese	1,075	83	67
NIR+VOC	Cheese	767	94	72
5 dairy systems:				
FTIR	Milk	1,222	99	65
FA	Milk	1,175	70	65
FTIR+FA	Milk	1,130	99	70
NIR	Cheese	903	67	52
VOC	Cheese	1,075	75	48
NIR+VOC	Cheese	767	94	57

Correct classification (%) of milk and cheese samples

Università degli Studi di Padova

Methods	Traditional			Modern			
				TMR			
	No AF	AF	пау+Сг	No silage	Silage		
3 dairy systems:							
FTIR	68		78		70		
FA	66		82		82		
FTIR+FA	73		80		80		
NIR	62		79		43		
VOC	57		77		31		
NIR+VOC	67		-	75			
5 dairy systems:							
FTIR	67	55	66	67	69		
FA	60	25	74	68	87		
FTIR+FA	76	62	70	68	80		
NIR	55	29	71	43	44		
VOC	40	49	58	38	37		
NIR+VOC	56	46	65	44	68		

Odds ratio estimates and confidence interval (95%) of correct classification

Università degli Studi di Padova

The results for all LDA were coded as binary variables (0, 1)

- This study allowed comparing different sources of information for discriminating dairy systems on a large number of individual milk samples and on the individual model cheeses
 - On milk, fatty acid profile tend to be more effective than infrared techniques especially for modern dairy systems with silage
 - On cheese, infrared and volatile fingerprints are equally effective in the discrimination ability but their combination yield acceptable results
- Instrumental methods are more effective than sensory description

Trento Province

Breeder Federation of the Trento Province

• GC analysis

ThermoQuest GC flame-ionization detector (ThermoElectron Corp., Waltham, MA)

High polar fused-silica capillary column (100 m, 0.25 mm i.d.; thickness 0.20 μ m)

Helium flow rate of 1 mL/min

Oven temperature (60°C) was held for 1 min, 173°C at a rate of 2°C/min, 173°C for 30 min, 185°C at 1°C/min, 85°C for 5 min, increased to 220°C at a rate of 3°C/min, and finally held at 220°C for 19 min

The injector temperature (270°C) and the detector temperature (300°C)

Mele et al. (2016)