A review of the development of some novel dairy cattle traits based on modern techniques in North America

Albert De Vries

Department of Animal Sciences
University of Florida
Gainesville, Florida, USA
devries@ufl.edu

Overview

- Traits currently used in sales of genetics in USA
- Sensors and image analysis at the 2018 ADSA meeting
- Facial biometrics
- Calves
- Data integration and decision making

Traits routinely evaluated in the USA (USDA/CDCB)

Year	Trait	Year	Trait	
1926	Milk & fat yields	2006	Stillbirth rate	
1978	Conformation (type)	2006	Bull conception rate ²	
1978	Protein yield	2009	Cow & heifer conception rates	
1994	Productive life	2016	Cow livability	
1994	SCS (udder health)	2017	Gestation length	
2000	Calving ease (dystocia) ¹	2017	Residual feed intake (research) ³	
2003	Daughter pregnancy rate	2018	Disease resistance (6 traits) 4	

¹Sire calving ease evaluated by Iowa State University (1978–99)

²Estimated relative conception rate evaluated by DRMS in Raleigh, NC (1986–2005)

³Research trait ... no official evaluations yet

⁴Official evaluations launched April 2018

Disease resistance Health trait index

Disease	Estimated direct cost*	
Hypocalcemia		\$38
Displaced abomasum		\$178
Ketosis	Diagnosis of diseases	\$28
Mastitis	increasingly more supported by sensors	\$72
Metritis		\$105
Retained placenta	\$64	

^{*}Liang et al., 2017; Donnelly et al. (2016).

Example: Other traits offered in North America

CLARIFIDE® PLUS... PROVIDES MORE OPPORTUNITY FOR COW AND CALF WELLNESS AND PROFIT

CDCB Evaluation

- Parentage
- Production
- Fertility
- Longevity, Milk Quality & Calving
- Functional Type

Wellness Traits

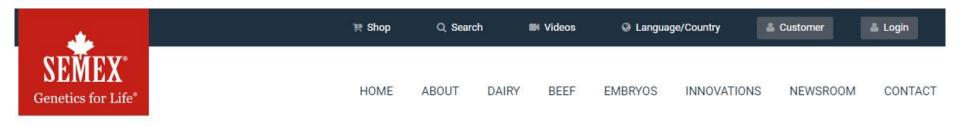
- Mastitis
- Lameness
- Metritis
- Retained Placenta
- Displaced Abomasum
- Ketosis

Calf Wellness

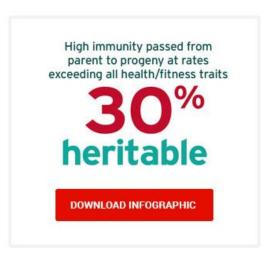
- · Calf Livability
- Calf Respiratory
- Calf Scours

Genetic Conditions

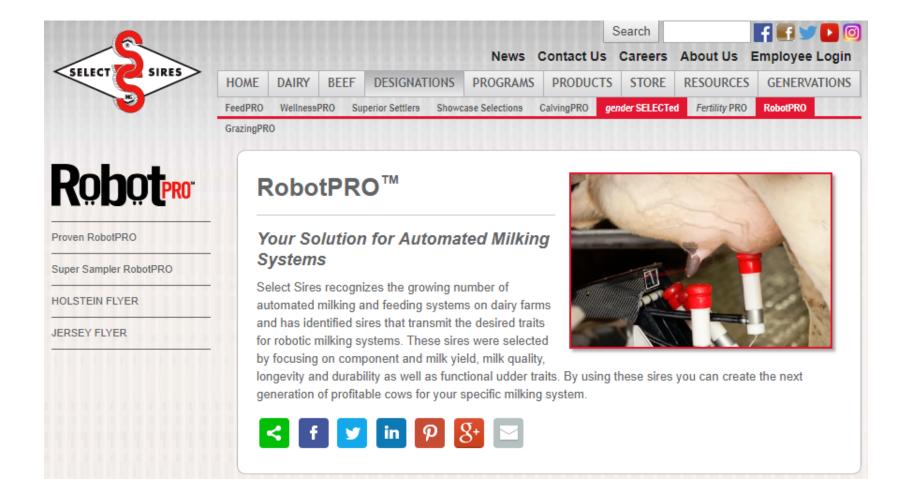
- Polled (no fee)
- Milk Components
- Genetic conditions*
- Infertility Haplotypes


DWP\$*Animal Ranking

* CVM, Brachyspina and Beta Casein A2 available with add-on fee.



Example: Other traits offered in North America


DISEASE RESISTANT GENETICS

Example: Other traits offered in North America

Direction: Robot data used for genetic evaluations

Novel traits with heritability estimates Egger-Danner et al. Animal 9:191 (2015). Table 2

Udder health

 Clinical mastitis, improved SCC, electrical conductivity, pathogen information, lactoferrin, minerals, near-IR spectroscopy, PCR, IR thermography

Reproduction

 Fertility related diseases, lutheal activity, multiple ovulation, ovary cycle health

Metabolism

 Ketosis, milk fever, displaced abomasum, fat/protein ratio

Feed and legs

 Lameness, disorders based on veterinary or hoof trim data

Feed efficiency and methane

 Residual feed intake, methane prediction

Other novel traits

 Temperament, suckling behavior, milkability, AMS behavior traits, activity data, fatty acids

Novel traits based on sensors and image analysis

Slide: Jeffrey Bewley Picture stolen from internet

Potential for new phenotypic data from automated technology measurements Jeffrey Bewley. https://www.slideshare.net . Posted May 2018

2018 ADSA annual meeting Search for "sensor" in abstracts

- 144 A novel approach to estimate intake of lactating dairy cows through multiple on-cow accelerometer sensors. N. A. Carpinelli*, F. Rosa, R. C. B. Grazziotin, and J. S. Osorio, *Dairy and Food Science Department, South Dakota State University, Brookings, SD.*
- 145 Validation of an ear-tag accelerometer to identify feeding and activity behaviors of tie-stall housed dairy cattle. A. Zambelis, T. Wolfe, and E. Vasseur*, Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- T56 Preliminary exploration of the relationship between automated rumen sensor data and feed intake in lactating dairy cows. C. J. Siberski*, M. R. O'Neil, J. E. Koltes, and H. A. Ramirez-Ramirez, *Iowa State University, Ames, IA*.
- 269 Statistical validation of a geometric approach to image analysis of anatomical traits. C. McVey*1, J. Velez², and P. Pinedo¹, ¹Colorado State University, Fort Collins, CO, ²Aurora Organic Dairy, Boulder, CO.

2018 ADSA annual meeting Search for "sensor" in abstracts (II)

- 449 The value of precision technologies in the genetic evaluation of dairy cows. M. van der Voort*1, C. Kamphuis², and H. Hogeveen¹, ¹Wageningen University, Business Economics Group, Wageningen, the Netherlands, ²Wageningen Livestock & Research, Animal Breeding and Genetics Centre, Wageningen, the Netherlands.
- 450 Early prediction of lactational milk, fat and protein yields using daily milk data. O. Nir (Markusfeld), G. Katz*, and L. Reuveni, *Afimilk, Kibbutz Afikim, Israel*.
- 451 Comparison of milk composition and somatic cell count estimates from automatic milking systems sensors and milk recording laboratory analyses. L. Fadul-Pacheco^{1,2}, R. Lacroix¹, M. Séguin¹, M. Grisé¹, E. Vasseur², and D. Lefebvre*¹, ¹Valacta, Ste-Anne-de-Bellevue, QC, Canada, ²McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- 452 Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. N. Gengler*, *ULiege-GxABT*, *Gembloux*, *Belgium*.

2018 ADSA annual meeting Search for "image" in abstracts

- M201 Assessment of heat and methane production through infrared thermography in mid-lactation dairy cows. A. R. Guadagnin¹, V. Fischer*¹, J. P. Matiello¹, L. G. R. Pereira², and F. S. Machado², ¹Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, ²Empresa Brasileira de Pesquisa Agropecuaria, Juiz de Fora, MG, Brazil.
- M209 Use of 3-dimensional camera to predict body weight in pre-weaned dairy calves. J. R. R. Dorea*, A. F. A. Fernandes, V. C. Ferreira, A. Cominotte, D. K. Combs, and G. J. M. Rosa, *University of Wisconsin-Madison, Madison, WI*.
- **365** Automatic classification of dairy cattle skin injury type and severity using machine-learning techniques. A. A. Boatswain Jacques¹, R. S. Knight¹, M. Leduc*^{2,3}, V. I. Adamchuk¹, and E. Vasseur², ¹Bioresource Engineering Department, McGill University, Montreal, PQ, Canada, ²Animal Science Department, McGill University, Montreal, PQ, Canada, ³Valacta, Sainte-Anne-de-Bellevue, PQ, Canada.
- 454 Image-based phenotyping: Examples from plant breeding. N. Miller*, *University of Wisconsin, Madison, WI.*

A Face Only an Investor Could Love: CEOs' Facial Structure Predicts Their Firms' Financial Performance

Psychological Science 22(12) 1478–1483 © The Author(s) 2011 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797611418838 http://pss.sagepub.com

Elaine M. Wong¹, Margaret E. Ormiston², and Michael P. Haselhuhn³

¹Department of Communication, University of Wisconsin–Milwaukee; ²Department of Organisational Behaviour, London Business School; and ³Sheldon B. Lubar School of Business, University of Wisconsin–Milwaukee

Proc. R. Soc. B (2008) 275, 2651–2656 doi:10.1098/rspb.2008.0873 Published online 19 August 2008

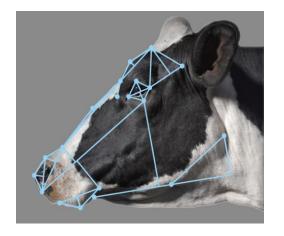
(\$)SAGF

In your face: facial metrics predict aggressive behaviour in the laboratory and in varsity and professional hockey players

Justin M. Carré¹ and Cheryl M. McCormick^{1,2,*}

¹Department of Psychology, and ²Centre for Neuroscience, Brock University, 500 Glenridge Avenue, St Catharines, Ontario, Canada L2S 3A1

Chinese lecturer to use facialrecognition technology to check boredom levels among his students



356 Facial biometrics as predictors of productivity, fertility, and health traits in elite dairy sires. C. McVey* and P. Pinedo, Colorado State University, Fort Collins, CO.

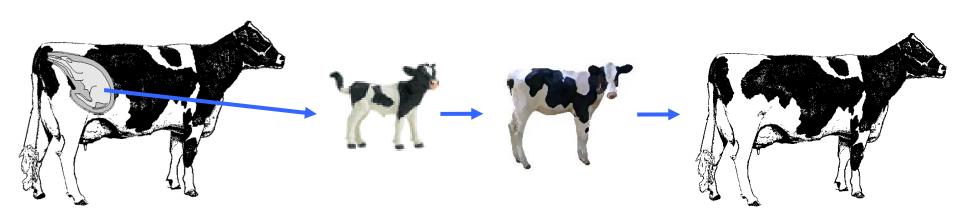
ADSA 2017

- 1. Pictures from sire catalogue, 62 bulls
- 2. gEstimated Breeding Values: productivity, health, longevity, fertility
- 3. Use facial recognition software \rightarrow facial biometrics
- 4. Predictors: gPTA type traits + facial biometrics

Conclusion:

"All traits demonstrated significant correlations with facial biometrics. Productivity, longevity, and fertility traits were particularly well predicted."

Finally, Facial Recognition for Cows Is Here



... software uses images to identify individual animals based on hide patterns and facial recognition, and tracks key data such as food and water intake, heat detection and behavior patterns ...

https://gizmodo.com/finally-facial-recognition-for-cows-is-here-1822609005

Growing interest in risk factors early in life to predict future performance and health

Genetics

Nutrition

Environment

Health

Genetics

Health

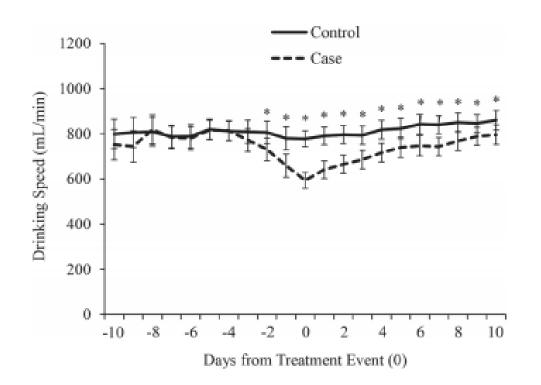
Growth

Behavior

Cow performance

Automatic calf feeders have arrived in the USA

Measure:


- Drinking speed
- Milk consumption
- Visit frequency
- Unrewarded visits

The association between daily average feeding behaviors and morbidity in automatically fed group-housed preweaned dairy calves

W. A. Knauer,*1 S. M. Godden,* A. Dietrich,† and R. E. James†
*Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
†Department of Dairy Science, The Virginia Polytechnic and State University, Blacksburg 24061

"Sick calves change their feeding behavior before and during an illness event, suggesting that feeding behavior may be a useful tool to detect disease onset."

Calf location tracking

"We have the technology to track animals very precisely, and get data (use of space/resources, social networks) that are likely to be predictive of health, productivity, welfare. However, there isn't a lot of clarity here yet."

Dr. Emily Miller-Cushion Animal welfare and behavior University of Florida

Personality is associated with feeding behavior and performance in dairy calves

Heather W. Neave, Joao H. C. Costa, Daniel M. Weary, and Marina A. G. von Keyserlingk Animal Welfare Program, University of British Columbia, 2357 Mall, Vancouver, BC, Canada, V6T 1Z4

3 behaviors (interactive, exploratory-active, and vocal-inactive) explained 73% of the variance in feeding behavior.

DHM: Automatic milk feeding system + careful daily monitoring of the calves by employees → identify health, performance, and personality differences for individual calf management to best meet their needs.

Automatically measure personality, location, activity with video/image analysis?

BIOLOGY

Fowl Language: AI Decodes the Nuances of Chicken "Speech"

How machine learning can translate chicken chatter and improve farming

By Ferris Jabr on December 11, 2017

"... the birds have "patterns of speech" that reveal a lot about their well-being."

Where do new phenotypes come from?

Barm: Flooring type, bedding materials, density, weather data

Cow: Body temperature, activity, rumination time, feed & water intake

Parlor: yield, composition, milking speed, conductivity, progesterone, temperature

Silo/bunker: ration composition, nutrient profiles

Pasture: soil type/composition, nutrient composition

Laboratory/milk plant: detailed milk composition, mid-infrared spectral data

Source: http://commons.wikimedia.org/wiki/File:Amish_dairy_farm_3.jpg

University of Wisconsin virtual dairy farm uses AI to improve farm management

By Mary Ellen Shoup 🗗

22-Aug-2017 - Last updated on 23-Aug-2017 at 08:12 GMT

http://dx.doi.org/10.3168/jds.2013-6693

© American Dairy Science Association®, 2014.

Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms

The multidisciplina management optio

Saleh Shahinfar,*1 David Page,† Jerry Guenther,* Victor Cabrera,* Paul Fricke,* and Kent Weigel* *Department of Dairy Science, and

†Department of Biostatistics and Medical Informatics and Department of Computer Science, University of Wisconsin, Madison 53706

Summary

- Most ideas/technologies come from Europe, Asia
- Novel traits: welfare, animal happiness, adaptation
- Trends towards image analysis, artificial intelligence, combining data from various sources
- Data integration likely a problem in the USA

