

Endocrine and classical fertility traits of Swedish dairy cows based on in-line milk progesterone

GM Tarekegn, P Gullstrand, E Strandberg, R Båge, E Rius-Vilarrasa, JM Christensen, B Berglund

EAAP 2018

69th Annual Meeting of the European Federation of Animal Science

Dubrovnik, Croatia, 27th to 31st August 2018

Introduction

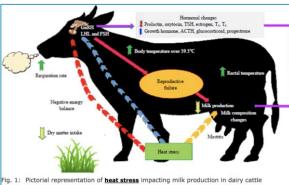
- Dairy cows in developed countries suffer a decline of fertility.
- \succ In the last 30 to 50 yrs:
- ✤ Animals showing oestrus (%): 80% to 50%
- Duration of detected oestrus: 15 h to 5 h
- CI increased by 25 days 1995 to 2010 in Dutch herds (Tenghe et al., 2015).

Trend of conception rate in Swedish dairy herd. Source: SDA (2008).

 17.9% of culling reasons (Cattle Statistics, 2017)

✤Selection targeting only yield as cause

(Gutierrez et al., 2006; Weigel, 2006)

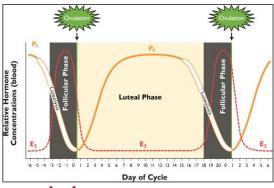

High milk production negatively

influences physiological pathways to

establish pregnancy (Walsh et al., 2011).

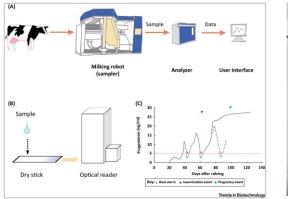
Lactating cows suffer metabolic load and

stress (Pryce et al., 2004).

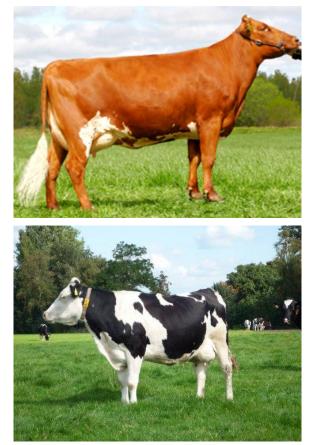

- Past interventions for fertility limited to classical traits
- Classical traits:
 - influenced by env't factors and mngt decisions
 - ✤ low *h*² estimates (Tenghe et al., 2015)
 - Iow rates of genetic gain
- Revising selection indices to functional traits (Walsh et al., 2011).

- Endocrine traits (EnT)-trait of choice.
 - Less affected by env't and mngt decisions
 - Reflect cows' physiology (Tenghe et al., 2015)

Some EnT - strongly genetically correlated with MY in early lactation (Nyman et al., 2014).

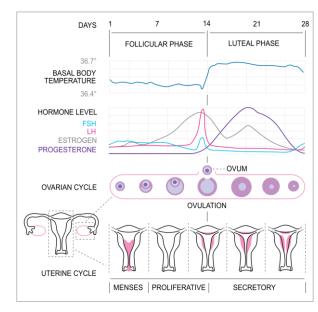


Current initiative to improve fertility of the Nordic dairy herds


- Finnish dairy herd fertility evaluation (Häggman et al., 2018)
 Objective:
- Aim of the study was to assess endocrine and classical fertility traits of Swedish dairy herds based on in-line milk progesterone records

Material and methods

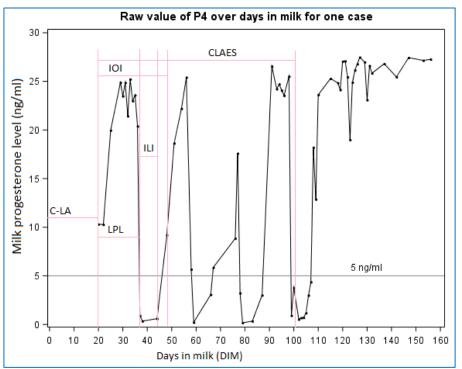
- SR and SH cows from 14 herds
- The samples collected by DeLaval Herd Navigator (HN)
- The actual P4 records were used



• 5ng/ml P4 concentration was used as a threshold.

Filtering criteria (FC)

- Lactation retained: if interval from calving to end of herd recording was ≥ 60 days
- P4 samples taken before 20 DIM/lactation were excluded
- Lactations started P4 recording after 35 DIM were excluded



Retained observations, lactations and number of cows after filtering criteria

	P4-samples	%P4	Lact.	%Lact.	Cows	%Cows
Start data:	286,321	100	5371	100	3653	100
Herd FC:	243,072	85	4154	77	3094	85
Lact FC:	210,403	73	3466	65	2645	72

Traits evaluated

Endocrine traits:

Classical traits:

- Caving to first insemination (CFI)
- Calving to last insemination (CLI)
- First to last insemination (FLI)
- Calving interval (CI)

Defining endocrine fertility traits from milk progesterone curve

Model employed:

$$Y_{ijkl} = m + B_i + P_j + S_k + e_{ijkl}; \text{ where,}$$

m= Overall mean;
B = Breed (i=1&2)
P = Parity (j=1 to 5);
S = Season (k=1 to 4)

e = Random error

Least square means (days) from analysis of endocrine fertility traits

Results

SLU

Factor	C-LA	ILI	ΙΟΙ	LPL	
Overall	34.9	6.9	23.7	11.5	
Parity	***	***	***	**	
1	32.7°	5.5 ^c	20.8 ^c	9.1 ^c	
2	33.9 ^{bc}	7.2 ^{ab}	24.2 ^{ab}	11.5 ^{ab}	
3	34.1 ^{bc}	7.4 ^{ab}	24.0 ^{ab}	12.3 ^{ab}	
4	37.1 ^a	7.6 ^a	26.1 ^a	12.6 ^{ab}	
≥5	36.8 ^{ab}	6.6 ^{abc}	23.6 ^{abc}	11.8 ^{abc}	
Breed	***	NS	***	**	
SR	36.2 ^a	6.7	22.3 ^b	10.3 ^b	
SH	33.7 ^b	7.1	25.2 ^a	12.7 ^a	
Season	***	NS	NS	NS	
Winter	35.4 ^b	7.0	24.1	11.8	
Spring	37.8 ^a	7.0	24.2	12.0	
Summer	32.9 ^c	6.6	22.8	11.1	
Autumn	33.6 ^{bc}	6.9	23.9	11.0	

Least square means (days) from analysis of classical fertility traits

Factor	CFI	CLI	FLI	CI
Overall	91.2	153.1	61.9	386.2
Parity	*	NS	NS	*
1	88.1 ^b	157.3	69.2	378.0 ^b
2	90.1 ^{ab}	158.0	67.9	385.5 ^a
3	93.4 ^a	155.6	62.2	389.2 ^a
4	92.2 ^{ab}	145.9	53.8	389.9 ^a
≥5	92.4 ^{ab}	148.7	56.3	388.7 ^a
Breed	***	**	NS	**
SR	88.6 ^b	146.6 ^b	58.1 ^b	382.0 ^b
SH	93.9 ^a	159.6 ^a	65.7 ^a	390.5 ^a
Season	***	***	***	***
Winter	95.4 ^a	142.7 ^b	47.8 ^{bc}	394.2 ^a
Spring	92.5 ^{ab}	129.5 ^c	37.0 ^c	393.0 ^a
Summer	87.7°	145.5 ^b	57.8 ^b	371.4°
Autumn	89.8 ^{bc}	194.6 ^a	104.9 ^a	386.4 ^b

Estimated heritability (h^2) of endocrine and classical fertility traits

Trait	C-LA	LPL	ΙΟΙ	CLAFS	LA60	PLA	CI	CFI	CLI	FLI
h ²	0.25	0.05	0.06	0.12	0.15	0.14	0.11	0.01	0.01	0.01

- SR had better fertility than SH in both endocrine and classical fertility traits.
- Fertility of the dairy cows decreases along parity up to the 4th parity which could be linked to the increased milk yield
 Few endocrine traits (e.g. C-LA) could be good indicators
 - for fertility and may help to define breeding goals.

Dairy Herd owners

Thank you