

Genome-Wide Association Study and Whole Genome Selection for Resistance to Bovine Respiratory Disease in Pre-Weaned Holstein Calves using Thoracic Ultrasonography

Allison Quick, Terri Ollivett, Brian Kirkpatrick, Kent Weigel

University of Wisconsin - Madison

Introduction

Bovine Respiratory Disease (BRD)

- Incidence (USDA, 2012)
 - 18.1% in pre-weaned dairy calves
 - 11.2% in post-weaned dairy calves

Pathogens

- Viral: Bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR), bovine respiratory syncytial virus (BRSV), parainfluenza type 3, and bovine herpesvirus 1
- Bacterial: Pasteurella multocida, Manheimia haemolytica, and Histophilus somn

Impact of BRD in Dairy Calves

- Symptoms
 - Depression
 - Abnormal respiration
 - Rumen fill
 - Weight-loss
 - Decreased appetite
 - Increased temperature
 - Nasal and ocular discharge
 - Drooped ears

- Short & Long-Term Effects
 - Early mortality
 - Premature culling
 - Reduced growth rate
 - Delayed age at first calving
 - Decreased milk production

Diagnostic Methods

- Necropsy
- Visual Appraisal
- Bronchoalveolar lavage
- Transtracheal wash
- Deep pharyngeal swab
- Thoracic ultrasound

Images from: Iowa State University, College of Veterinary Medicine; Wisconsin Veterinary Diagnostic Laboratory

Henderson et al., 2011

- 7,372 heifer calves at a New York calf rearing facility
- Health events were recorded by farm staff
- Opportunity period was arrival (1 to 7 d) to weaning
- Incidence rate for calf BRD was 38.4%
- Heritability estimate for calf BRD was 0.095

Neibergs et al., 2014

- Holstein calves in California & New Mexico age 27 to 60 d
- Visual appraisal + deep pharyngeal swab
- Heritability estimates: 0.20 to 0.22 within states

0.13 combined across states

Regions implicated by GWAS:

<u>California</u>

- BTA15 between 30-31 Mb: *poliovirus receptor-related 1* gene
- BTA14 between 63-64 Mb: AZIN1 gene

<u>New Mexico</u>

- BTA16 between 70-71 Mb
- BTA14 between 7-8Mb

Mahmoud et al., 2017

- 31,396 heifer calves born on 43 German dairy farms
- Health events were recorded by farmers & veterinarians
- Opportunity period was birth to 2 months of age
- Incidence rate for calf BRD was 28.4%
- Heritability estimate for calf BRD was 0.07
- Impact of calf BRD on 1st lactation: -0.3 kg/d of milk
 -0.015 kg/d fat
 -0.010 kg/d protein

Vukasinovic et al., 2018

- Farmer-reported health events from 0 to 365 d of age
- 300 commercial dairy farms in U.S.

Age of Calf	No. Records	Incidence	h ²
0 to 3 d	224,112	4.6%	0.097
4 to 14 d	432,570	4.6%	0.058
15 to 50 d	633,123	9.7%	0.049
51 to 365 d	828,695	15.3%	0.039
0 to 365 d	874,170	20.2%	0.042

Vukasinovic et al., 2018

- 10-SNP sliding windows identified using ssGWAS:
 - BTA1 between 26.7-27.1, 76.8-77.0, and 127.3-127.4 Mb
 - BTA2 between 79.3-79.8 Mb
 - BTA9 between 43.6-44.0, 94.5-95.0, 97.6-97.8, 101.0-101.3 Mb
 - BTA14 between 11.5-11.8 and 53.1-53.4 Mb
 - BTA27 between 2.0-2.3, 4.4-4.5, and 19.1-19.2 Mb
 - X between 48.6-52.7, 109.3-109.7, and 126.0-127.6 Mb

Our Study

Objectives

- Establish a protocol for objective and efficient assessment of clinical and subclinical BRD phenotypes
- Build an initial genomic reference population for BRD
- Identify genomic regions associated with BRD
- Estimate genetic parameters and predict breeding values to facilitate genomic selection against BRD

Data Collection

- 1,107 Holstein heifer calves
- 6 dairy farms in southern Wisconsin
- 4 trained evaluators
- Data collection from May to August 2017
- Each calf was measured at 3 and 6 weeks of age

Clinical Disease Scoring by Visual Appraisal

					E Calf Health	Scorer	
Eye scores				Herd Code 123456	78 Herd Name	lig Cow Dairy	
Normal	Small amount of ocular discharge	Moderate amount of bilateral discharge	Heavy ocular discharge	Scorer's Name Tom		Score Da	te 11/26/14
6		Ten l	R	Calf ID Birthdate Age - d 1 11/24/14 2	Nose Eye Ear App. Att	. Cough Temp Fecal	Navel Joint US Total
		- Aller		Nose Eye Ear	Appetite Attitude Cough	Temp Fecal	Navel Joint
				Score 0	Score 1	Score 2	Score 3
Ear scores					anne e	Manas. /	1
Normal	Ear flick or head shake	Slight unilateral droop	Head tilt or bilateral droop	(Sint)		1-4-1	
	1900	Panla		Provide State		X AND	TTTT
		Carlo Sal			Picture	Description	
				Calf Comment	UltraSound S	Score UltraSol	und Comment
					0 1 2 3	4 5	
			AND AS				

- Sensitivity = 62%
- Specificity = 74%

https://www.vetmed.wisc.edu/dms/fapm/fapmtools/calves.htm

Save Score

Date Cow ID

Subclinical Disease Scoring by Thoracic Ultrasound

Sensitivity = 94%

Specificity = 100%

Detects pulmonary consolidation – regions of soft lung tissue that ¹⁵ are swollen or hardened, and filled with liquid rather than air

Overall Bovine Respiratory Disease (BRD) Scores

ore		Thoracic Ultrasound Score			
, Sco		< 2	2	≥ 3	
piratory	< 2 scores ≥ 2	Healthy	Subclinical Lobular Pneumonia	Subclinical Lobar Pneumonia	
les		1	3	4	
Clinical R	≥ 2 scores ≥ 2	Upper Respiratory Tract Infection	Clinical Lobular Pneumonia	Clinical Lobar Pneumonia	
		2	5	6	

Example: Calf 19893

Clinical Scores: Cough = 2 Temperature = 3

Subclinical Score: Ultrasound = 5

Overall BRD Score: 6

Clinical Lobar Pneumonia

Overall Prevalence of BRD, by Age

	3-Week Prevalence (%)	6-Week Prevalence (%)
Healthy (1)	81.1	77.1
Upper Respiratory Tract Infection (2)	2.9	2.7
Subclinical Lobular Pneumonia (3)	11.9	12.5
Subclinical Lobar Pneumonia (4)	2.6	5.3
Clinical Lobular Pneumonia (5)	0.8	1.4
Clinical Lobar Pneumonia (6)	0.7	1.0

Overall Prevalence of BRD, by Farm

Hard # of		Overall BRD Score (%)					
пега	Calves	1	2	3	4	5	6
Α	57	92.8	-	6.3	-	0.9	-
В	226	72.6	3.6	18.5	4.0	0.9	0.5
С	295	90.8	3.4	5.1	-	0.5	0.2
D	257	64.8	2.8	16.5	11.2	1.6	3.1
E	245	83.1	1.9	12.1	1.3	1.5	0.2
F*	27	81.5	-	3.7	7.4	7.4	-
Total	1107	79.2	2.7	12.2	3.8	1.2	0.9

Genomic Analysis

- 1,016 animals genotyped with ZL5 chip (1,014 after edits)
- Imputation to 690,291 SNPs using BEAGLE 4.1
- Single-step GWAS with 1 Mb sliding windows (BLUPF90)
- Single-step GBLUP for BV prediction (BLUPF90)
- Phenotypes:
 - BRD (score 1 vs. scores 2-6) at 3 and 6 weeks of age
 - CON (scores 1-2 vs. scores 3-6) at 3 and 6 weeks of age

GWAS Results

Top Genomic Regions

BTA	Start (BP)	Phenotypes	Genes
1	129,336,133	CON3, BRD3	CLSTN2
6	81,286,240	BRD3, BRD6, CON6	TECRL
6	92,804,334	CON6, BRD6	SCARB2, FAM47E, STBD1, CCDC158, SHROC M3, SOWAHB, SEPT11, CCN1, CCNG2, LOC10, 901983
7	99,919,061	CON3, BRD3	RGMB
9	4,227,465	CON6, BRD6	
10	89,679,387	CON6, BRD6	NOXRED1, ISM2, VIPAS39, AF 5A1, U6atac, U6, SPTCL2, ALKBH1, ADCK1, STW1
11	91,475,811	CON3, BRD3	GGTA1, LOC525099, LOC527409
12	41,160,340	CON6, BRD6	LOC101902172
12	62,458,043	CON6, BRD6	SLITRK5
15	51,296,284	CON3	TRIM21, RRM4, STIM1, RHOC, PGAP2, NUP98, ART1, CHRNA10, TRPC2, Five genes from OR52 family, LOC407145, LOC6186C4, LOC407148, LOC507756
18	41,503,327	CON3	TSHZ3, SNORA7
27	6,593,817	CON6, BRD6	WDR17, SPATA4, ASB5, SPCS3, VEGFC NEIL3, U6
28	19,000,877	CON6	ADO, EGR2 , NRBF2, JMJD1C, P2EP3
28	32,939,809	BRD3	KCNMA1, DLG5, POLR3A
29	40,034,122	CON3	LOC528815, LOC617765, PAG8, PCA5, VWCE, CYB561A3, DDB1, HKFC, SYT7, TMEM216, TMEM138, CPSF7, SDHAF2 , PPP1R32, DAGLA, FEN1 , MYRF, TMEM258

TSHZ3:

- •up-regulating miRNAs during metritis
- EGRents
 - regagenteris inhendestel spimeture radifiecting fat inferration of myelin structure and
 - Sumstitution
 - •abnormalities of the gene in humans
- Spending restrictive pulmonary disease,
 - nt ansuringia, and a spirately, an

 - enzyme complex also referred to as nervous, immune, respiratory, metabolic respiratory complex II systems
 - •FEN1: poor survival of stage-I lung adenocarcinoma in humans

Genetic Parameter Estimates

Phenotype	$\sigma_{ m g}^2$ (SE)	σ_e^2 (SE)	h ²
CON3	0.027 (0.010)	0.100 (0.010)	0.214
BRD3	0.036 (0.013)	0.112 (0.012)	0.241
CON6	0.012 (0.010)	0.136 (0.011)	0.084
BRD6	0.018 (0.018)	0.144 (0.012)	0.111

Distributions of Predicted Breeding Values

Summary of Our Project

- Scoring protocol allowed objective, efficient assessment of BRD phenotypes to build a genomic reference population
- GWAS identified regions containing putative genes with functions related to respiration and immunity
- Moderate heritability estimates suggest potential for achieving genetic progress in reducing the incidence of BRD
- 3-week phenotypes gave higher heritabilities due to smaller influence of management and chance pathogen exposure

Practical Implementation

Vukasinovic et al., 2018

- Calf health GPTAs now available from Zoetis
- Respiratory disease at various ages

Age of Calf	# Genotyped Calves	SD of GPTAs (%)	Mean REL (%)
0 to 3 d	220,571	2.51	50.1
4 to 14 d	202,946	1.65	41.7
15 to 50 d	198,900	2.23	42.3
51 to 365 d	212,895	2.50	38.1
0 to 365 d	212,201	3.01	40.1

Vukasinovic et al., 2018

- Calf Wellness (CW\$) index is now available from Zoetis
- 8% relative weight in Dairy Wellness Profit Index (DWP\$)

Trait	Relative Weight in Calf Wellness (CW\$) Index	
Respiratory Disease	29%	
Livability	43%	
Scours	28%	

Overall Conclusions

- Selection tools to improve dairy calf health are overdue
- Zoetis offers genomic predictions for calf scours, livability, and respiratory disease via farmer-reported health events
- Thoracic ultrasound offers an objective assessment of lung consolidation that can be implemented very efficiently
- Future research should focus on expanding the genomic reference population and developing systems to assess elite young bull and heifer calves in genetic nucleus herds

Mooving Forward. DAIRY SCIENCE AT WISCONSIN

Questions?

Funded by Hatch Grant 142-AAA3859 from the United States Department of Agriculture