
Genetic parameters of milkability and temperament recorded in automatic milking systems (AMS)

28.08, EAAP annual meeting 2018

Karoline B. Wethal¹, B. Heringstad¹², M. Svendsen²

¹ Faculty of Biosciences, Department of Animal and Aquacultural sciences

² Geno, breeding association

Background

More than 42 % of Norwegian milk produced in AMS

> 1800 AMS in Norway

Advantages with AMS data in breeding

- Data from each visit
- Objective and repeated measurements
- Development / changes in traits

(Photo: http://www.bbl.is)

Aim

- Investigate *traits important for AMS cows* → genetically improve robot efficiency
- Define new milkability and temperament traits from data recorded in AMS
- Estimate *heritability (h²)* and *genetic correlations (*r_g) between traits

Description of data

- Data from <u>77</u> Norwegian dairy herds:
 - With AMS from DeLaval > <u>one year</u>
 - AMS installed between 2000 to 2014.
- Total of **4 277 955** observations before editing:
 - Records on milkings and rejected milkings
- 365 days with data from each farm

Data edits

- Norwegian Red (NR) breed
- From 6 to 305 days in milk (DIM)
- ≥ 10 days with milkings per cow & lactation
 - not more than 30 rejected milkings per day
 - not more than 10 milkings per day
 - 5 minutes from one visit to the next (the same cow)

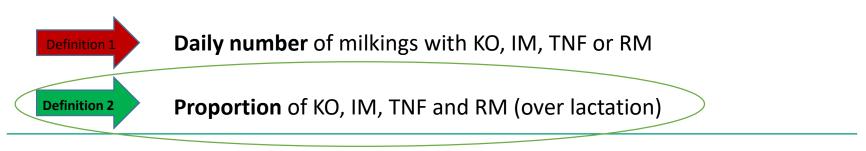
Data edits

- Restrictions on maximum milk yield and flow rate
- Lactation 1 9 (lactation ≥ 4 in one group)
- Calving from *april 2015* → *june 2017*

Final dataset:

- <u>1 012 912</u> daily obs on *4 883 cows*
- 566 testdays
- Records from <u>dec 2015</u> <u>july 2017</u>

- Milkability and temperament traits investigated:
- Boxtime (**BT**) in minutes
- Handlingtime (**HT**) in minutes
- Yieldtime \rightarrow kg / min boxtime (**YT**)
- Flowrate (FR) \rightarrow kg / min milking time


- Milkability and temperament traits investigated:
- Boxtime (**BT**) in minutes
- Handlingtime (**HT**) in minutes
- Yieldtime \rightarrow kg / min boxtime (**YT**)
- Flowrate (FR) \rightarrow kg / min milking time

One observation per <u>day</u> and <u>cow:</u>

Average per visit

- → Traits with information on unsuccessful milkings:
- No of milkings with kick off ≥ 1 (KO)
- No of milkings with 1 or more incompletely milked teat (IM)
- No milkings with 1 or more teat not found (TNF)
- No of rejected milkings (RM)

- → Traits with information on unsuccessful milkings:
- No of milkings with kick off ≥ 1 (KO)
- No of milkings with 1 or more incompletely milked teat (IM)
- No milkings with 1 or more teat not found (TNF)
- No of rejected milkings (RM)

Discrete

distribution:

 \rightarrow 0 to 7

 \rightarrow 0 to 7

0 to 7

0 to 30

Material and method

- Univariate models \rightarrow for variance components $\rightarrow h^2$ Heritability
- Bivariate models \rightarrow for genetic correlations, r_q

- Proc GLM (SAS 9.4)
- DMU package (Madsen & Jensen 2007)

Model 1- daily traits

 $\mathbf{Y} = Pa^*age + DIM + CYM + HY + HTD + a + pe + e$

Yij = observation i of **BT, HT, FR or YT** for cow j

Fixed effects: *Parity-Age at calving, Days in milk, Calvingyear-month, Herd-year*

Random effects: Herd-testday, permanent environment (pe), genetic effect of animal (a), residual (e)

Model 2 - frequency traits $Y = Pa^*age + CYM + HY + a + pe + e$

Yij = observation i of **pKO**, **pRM**, **pIM*** and **pTNF*** for cow j

Fixed effects: *Parity-Age at calving, Calvingyear-month Random effects: Herd-year,* permanent environment (pe), genetic effect of animal (a), residual (e)

* **pIM and pTNF →** random model with herd-year, animal (a), pe and e.

Results: heritability (h²)

Trait: (daily records)	h²	SE	r	Trait: (1 obs/lactation)	h²	SE			
ВТ	0.27	0.03	0.68	рКО	0.11	0.03			
ΥT	0.22	0.03	0.66	pIM	0.14	0.02			
НТ	0.05	0.01	0.48	pTNF	0.12	0.03			
FR	0.48	0.04	0.86	pRM	0.06	0.02			
Heritability calculated as: $h^2 = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_{pe}^2 + \sigma_e^2}$									
Repeatability calculated as: $r = \frac{\sigma_a^2 + \sigma_{pe}^2}{\sigma_a^2 + \sigma_{pe}^2 + \sigma_e^2}$									

Results – genetic correlations

Traits with daily records:

Trait HT YT BT 0.53 HT (0.01)-0.87 -0.58 ΥT (0.03)(0.10)-0.92 -0.50 0.98 FR (0.02)(0.11)(0.01)

Traits with 1 obs/lactation:

Trait	TNF	КО	IM
KO	0.02 (0.16)		
IM	1 (0.02)	0.30 (0.14)	
RM	0.14 (0.17)	0.21 (0.17)	0.19 (0.16)

Conclusion

- <u>High heritabilities</u> and favorable <u>genetic</u> <u>correlations</u> for many of the traits investigated
- New traits in AMS → we can improve milking efficiency genetically
- Our results confirms the <u>potential</u> for AMS data in breeding → substitute subjective evaluation of traits

Thank you for your attention!

