69th Annual Meeting of the European Federation of Animal Science # Gilthead seabream predation on mussel farms: a growing conflict TANJA ŠEGVIĆ-BUBIĆ *, LEON GRUBIŠIĆ, IGOR TALIJANČIĆ, IVA ŽUŽUL ## TRENDS IN AQUACULTURE PRODUCTION Aquaculture production and the plan of National Strategy of Croatia for aquaculture | Species | 2016 | 2017 | 2020
tonnes | | |---|--------|--------|--|--| | Marine fish farming Sparus aurata, Dicentrarchus labrax | 9.411 | 10.446 | 10.000 | | | Bluefin tuna Tunnus thynnus | 2.934 | 2.162 | 3.000*
*minimum, depend <mark>in</mark> | | | Shellfish
Mytilus galoprovincialis,
Ostrea edulis | 763 | 982 | on fishing quotas 5.000 | | | Total | 13.235 | 13.843 | 24.050 | | Source: Ministry of agriculture, State Institute of Statistics ## Wild gilthead seabream in the Adriatic Sea littoral zones purse-seine catch ■ Fisheries ■ Aquaculture Tonnes (t) Croatian Bureau of Statistics ✓ The escape of fish from sea-cage aquaculture and escape of eggs and larvae through spawning in cages ✓ The effects of climate-driven changes in temperature on seabream productive capacity, growth, survival, and migration Earlier maturation of wild female with gonads exhibiting 30% of the total body weight (250g). Contents lists available at ScienceDirect #### Aquaculture Damages on mussel farms potentially caused by fish predation—Self service on the ropes? Tanja Šegvić-Bubić ^{a,*}, Leon Grubišić ^a, Nikola Karaman ^b, Vjekoslav Tičina ^a, Krstina Mišlov Jelavić ^b, Ivan Katavić ^a ## The aim of present study: - √ to determine the abundance and composition of wild fish communities in vicinity of shellfish farms, with focus on wild gilthead seabream Sparus aurata - ✓ to quantify the amount of mussels Mytilus galloprovincialis losses due to fish predation activities at farms located in most productive shellfish areas - √ to describe the nutrition preferences of wild seabream by analysing stomach content ^a Institute of Oceanography & Fisheries, PO Box 500, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia b Center for Marine Studies, University of Split, Livanjska 5/III, 21000 Split, Croatia #### > SEABREAM ABUNDANCE - Visual census by scuba divers - Spatial and temporal design, univariate PERMANOVA #### ESTIMATION OF MUSSEL LONGLINES LOSSES - Monitoring of 280 new ropes with an approximate length of 2.5 m during June 2017, September 2017 and January 2018 - Initially, a sample of 40 ropes was weighed and mussel length and density per meter were measured in order to obtain approx. length—weight rope ratio - Based on empirical sample date, 1 m of rope had approximately 3 kg of mussels, with average density of 652±47 and shell length of 34.3±2.54mm. - ESTIMATION OF MUSSEL LONGLINES LOSSES - ➤ Initial rope length - > Total rope length and length containing mussels after 24 h, 7 days and 30 days of deposition - \triangleright Loss (24 h)% = 100×(total rope length (Lt)-rope length with mussels (Lt1))/Lt, - \triangleright Loss (one week)% = 100×(Lt1-rope length with mussels (Lt2)) /Lt. ## Abundance and composition of wild fish communities in vicinity of shellfish farms Average abundance of wild fish species (mean±s.e.) per 5000 m3 at the mussel farms and at control locations | | Species | | Marina Bay | | Lim Bay | | Mali Ston Bay | | |-------------|-----------------------|----|-----------------|-----------------|-----------------|-----------------|----------------|-----------------| | Family | | TC | Farm | Control | Farm | Control | Farm | Control | | Atherinidae | Atherina hepsetus | Mi | 47.2 ± 13.9 | 0.9 ± 0.4 | 22.2 ± 7.1 | 3.3 ± 1.9 | 6.3 ± 4.6 | 3.3 ± 1.9 | | Belonidae | Belone belone | Mi | 1.7 ± 0.6 | 0.3 ± 0.2 | 0.2 ± 0.2 | 0.3 ± 0.3 | 1.4 ± 0.6 | 0.3 ± 0.3 | | Carangidae | Seriola dumerili | Ma | 0.2 ± 0.1 | 0 | 0.03 ± 0.03 | 0 | 0.1 ± 0.1 | 0 | | | Trachinotus ovatus | Ma | 0.1 ± 0.05 | 0 | 0 | 0 | 0 | 0 | | Clupeidae | Sardina pilchardus | Mi | 43.1 ± 12.7 | 0 | 0 | 0 | 1.7 ± 0.9 | 0 | | Moronidae | Dicentrarchus labrax | Ma | 0.1 ± 0.1 | 0 | 0 | 0 | 0 | 0.8 ± 0.4 | | Mugilidae | | O | 15.7 ± 4.6 | 0.3 ± 0.2 | 3.9 ± 1.2 | 1.4 ± 0.7 | 5 ± 1.5 | 1.0 ± 0.5 | | Pomatomidae | Pomatomus saltatrix | Ma | 8.7 ± 2.8 | 0 | 1.8 ± 1.0 | 0 | 7.2 ± 3.1 | 0 | | Sparidae | Boops boops | Mi | 0 | 1.0 ± 0.4 | 0 | 0.4 ± 0.3 | 10.5 ± 2.9 | 0 | | | Diplodus annularis | Me | 3.9 ± 1.3 | 0.14 ± 0.1 | 2.4 ± 0.8 | 0 | 0.4 ± 0.2 | 0 | | | Diplodus puntazzo | Me | 1.5 ± 0.6 | 0.03 ± 0.03 | 3.0 ± 0.7 | 0.03 ± 0.03 | 2.1 ± 0.6 | 0.08 ± 0.08 | | | Diplodus vulgaris | Me | 6.2 ± 2.9 | 0.1 ± 0.09 | 4.6 ± 2.1 | 0 | 0.7 ± 0.4 | 0 | | | Lithognathus mormyrus | Me | 0 | 0 | 0 | 0 | 0.9 ± 0.4 | 0 | | | Oblada melanura | Mi | 15.4 ± 7.6 | 0 | 10 ± 6.2 | 0.06 ± 0.06 | 0 | 0 | | | Sarpa salpa | O | 10.1 ± 7.2 | 0 | 7.3 ± 4.5 | 0.3 ± 0.2 | 10.6 ± 2.8 | 0 | | | Sparus aurata | Me | 30.6 ± 4.1 | 0.11 ± 0.1 | 7.2 ± 1.7 | 0.03 ± 0.03 | 20.5 ± 5.1 | 0.31 ± 0.2 | ## Mussel longline losses – seasonal aspect Raša Bay: seabream bites plastic net ## Ways of Protection ?? • Anti-predators nets – 'Spanish bags' #### **OBSERVATIONS AND CONCLUSIONS:** - Strong trophic connectivity between seabream and mussel farms - Mussels dominant prey item for gilthead seabream take advantage of mussel farms that provide a highly abundant and easily accessible food source - In respect to mussel farm losses, average mussel damage observed in first week of rope deposition amounted to 54% of the initial recruitment inputs - Mussel losses caused by predation showed seasonal variability - Zootechnical activities at farm should be performed in the colder period of the year when the predation activity is less pronounced - New protecting methods are needed (underwater sound repellent against seabream or allowing species targeted fishing in mussel farming area) for supporting farm management stability.