

69th Annual Meeting of the European Federation of Animal Science

Gilthead seabream predation on mussel farms: a growing conflict

TANJA ŠEGVIĆ-BUBIĆ *, LEON GRUBIŠIĆ, IGOR TALIJANČIĆ, IVA ŽUŽUL

TRENDS IN AQUACULTURE PRODUCTION

Aquaculture production and the plan of National Strategy of Croatia for aquaculture

Species	2016	2017	2020 tonnes	
Marine fish farming Sparus aurata, Dicentrarchus labrax	9.411	10.446	10.000	
Bluefin tuna Tunnus thynnus	2.934	2.162	3.000* *minimum, depend <mark>in</mark>	
Shellfish Mytilus galoprovincialis, Ostrea edulis	763	982	on fishing quotas 5.000	
Total	13.235	13.843	24.050	

Source: Ministry of agriculture, State Institute of Statistics

Wild gilthead seabream in the Adriatic Sea littoral zones purse-seine catch ■ Fisheries ■ Aquaculture Tonnes (t) Croatian Bureau of Statistics

✓ The escape of fish from sea-cage aquaculture and escape of eggs and larvae through spawning in cages

✓ The effects of climate-driven changes in temperature on seabream productive capacity, growth, survival, and migration

Earlier maturation of wild female with gonads exhibiting 30% of the total body weight (250g).

Contents lists available at ScienceDirect

Aquaculture

Damages on mussel farms potentially caused by fish predation—Self service on the ropes?

Tanja Šegvić-Bubić ^{a,*}, Leon Grubišić ^a, Nikola Karaman ^b, Vjekoslav Tičina ^a, Krstina Mišlov Jelavić ^b, Ivan Katavić ^a

The aim of present study:

- √ to determine the abundance and composition of wild fish communities in vicinity of shellfish farms, with focus on wild gilthead seabream Sparus aurata
- ✓ to quantify the amount of mussels Mytilus galloprovincialis losses due to fish predation activities
 at farms located in most productive shellfish areas
- √ to describe the nutrition preferences of wild seabream by analysing stomach content

^a Institute of Oceanography & Fisheries, PO Box 500, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia

b Center for Marine Studies, University of Split, Livanjska 5/III, 21000 Split, Croatia

> SEABREAM ABUNDANCE

- Visual census by scuba divers
- Spatial and temporal design, univariate PERMANOVA

ESTIMATION OF MUSSEL LONGLINES LOSSES

- Monitoring of 280 new ropes
 with an approximate length
 of 2.5 m during June 2017,
 September 2017 and January
 2018
- Initially, a sample of 40 ropes
 was weighed and mussel
 length and density per meter
 were measured in order to
 obtain approx. length—weight
 rope ratio
- Based on empirical sample date, 1 m of rope had approximately 3 kg of mussels, with average density of 652±47 and shell length of 34.3±2.54mm.

- ESTIMATION OF MUSSEL LONGLINES LOSSES
 - ➤ Initial rope length
 - > Total rope length and length containing mussels after 24 h, 7 days and 30 days of deposition
 - \triangleright Loss (24 h)% = 100×(total rope length (Lt)-rope length with mussels (Lt1))/Lt,
 - \triangleright Loss (one week)% = 100×(Lt1-rope length with mussels (Lt2)) /Lt.

Abundance and composition of wild fish communities in vicinity of shellfish farms

Average abundance of wild fish species (mean±s.e.) per 5000 m3 at the mussel farms and at control locations

	Species		Marina Bay		Lim Bay		Mali Ston Bay	
Family		TC	Farm	Control	Farm	Control	Farm	Control
Atherinidae	Atherina hepsetus	Mi	47.2 ± 13.9	0.9 ± 0.4	22.2 ± 7.1	3.3 ± 1.9	6.3 ± 4.6	3.3 ± 1.9
Belonidae	Belone belone	Mi	1.7 ± 0.6	0.3 ± 0.2	0.2 ± 0.2	0.3 ± 0.3	1.4 ± 0.6	0.3 ± 0.3
Carangidae	Seriola dumerili	Ma	0.2 ± 0.1	0	0.03 ± 0.03	0	0.1 ± 0.1	0
	Trachinotus ovatus	Ma	0.1 ± 0.05	0	0	0	0	0
Clupeidae	Sardina pilchardus	Mi	43.1 ± 12.7	0	0	0	1.7 ± 0.9	0
Moronidae	Dicentrarchus labrax	Ma	0.1 ± 0.1	0	0	0	0	0.8 ± 0.4
Mugilidae		O	15.7 ± 4.6	0.3 ± 0.2	3.9 ± 1.2	1.4 ± 0.7	5 ± 1.5	1.0 ± 0.5
Pomatomidae	Pomatomus saltatrix	Ma	8.7 ± 2.8	0	1.8 ± 1.0	0	7.2 ± 3.1	0
Sparidae	Boops boops	Mi	0	1.0 ± 0.4	0	0.4 ± 0.3	10.5 ± 2.9	0
	Diplodus annularis	Me	3.9 ± 1.3	0.14 ± 0.1	2.4 ± 0.8	0	0.4 ± 0.2	0
	Diplodus puntazzo	Me	1.5 ± 0.6	0.03 ± 0.03	3.0 ± 0.7	0.03 ± 0.03	2.1 ± 0.6	0.08 ± 0.08
	Diplodus vulgaris	Me	6.2 ± 2.9	0.1 ± 0.09	4.6 ± 2.1	0	0.7 ± 0.4	0
	Lithognathus mormyrus	Me	0	0	0	0	0.9 ± 0.4	0
	Oblada melanura	Mi	15.4 ± 7.6	0	10 ± 6.2	0.06 ± 0.06	0	0
	Sarpa salpa	O	10.1 ± 7.2	0	7.3 ± 4.5	0.3 ± 0.2	10.6 ± 2.8	0
	Sparus aurata	Me	30.6 ± 4.1	0.11 ± 0.1	7.2 ± 1.7	0.03 ± 0.03	20.5 ± 5.1	0.31 ± 0.2

Mussel longline losses – seasonal aspect

Raša Bay:

seabream bites plastic net

Ways of Protection ??

• Anti-predators nets – 'Spanish bags'

OBSERVATIONS AND CONCLUSIONS:

- Strong trophic connectivity between seabream and mussel farms
- Mussels dominant prey item for gilthead seabream take advantage of mussel farms that provide a highly abundant and easily accessible food source
- In respect to mussel farm losses, average mussel damage observed in first week of rope deposition amounted to 54% of the initial recruitment inputs
- Mussel losses caused by predation showed seasonal variability
- Zootechnical activities at farm should be performed in the colder period of the year when the predation activity is less pronounced
- New protecting methods are needed (underwater sound repellent against seabream or allowing species targeted fishing in mussel farming area) for supporting farm management stability.

