

Genome-based inbreeding in French dairy sheep breeds

Introduction

Genetic diversity has been characterised and managed with pedigree-based inbreeding estimates

Constraints:

- (1) Pedigree completeness and quality are essential
- (2) Mendelian sampling variation is not considered
- (3) Does not take into account LD caused by selection

Introduction

The realised proportion of the genome that two individuals share can be estimated from genome-based information

Alternatives:

- (1) SNP-by-SNP: unique alleles in the base population
- (2) Segment-based: fragments of homozygous SNP (ROH)

Introduction

Selection of French dairy sheep for each breed separately

Breeds:

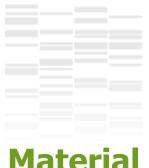
- (1) Lacaune: Confedration (LACCon) and Ovitest (LACOvi)
- (2) Manech Tête Rousse (MTR)
- (3) Manech Tête Noire (MTN)
- (4) Basco-Béarnaise (BB)

To quantify the genetic diversity in five selected French dairy sheep subpopulations and breeds with several **pedigree- and marker-based methods** and to compare the results in terms of rate of inbreeding and on effective population size

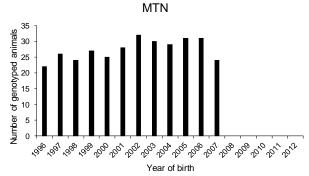
	Genotyped individuals	Individuals in pedigree	Equivalent number of complete generations
BB	321	1,861	6.10
MTN	329	1,616	5.29
MTR	1,906	11,574	7.61
LACCon	3,030	29,255	10.84
LACOvi	3,114	28,497	11.69

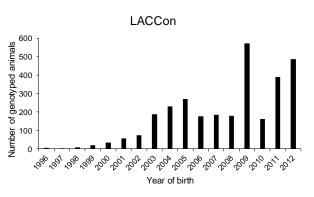
Total = 8,700 Total = 72,803

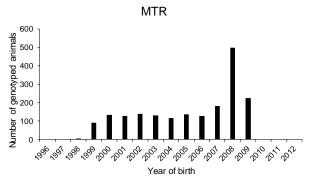
Lacaune (LAC)

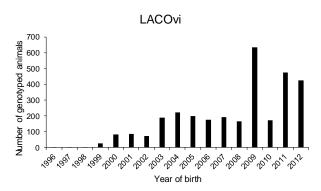

Lacaune has since 1976 two subpopulations (separate breeding schemes): LACCon & LACOvi

Manech Tête Noire (MTN)


Basco-Béarnaise (BB)






Material

OvineSNP50 BeadChip: 38,287 autosomal SNP

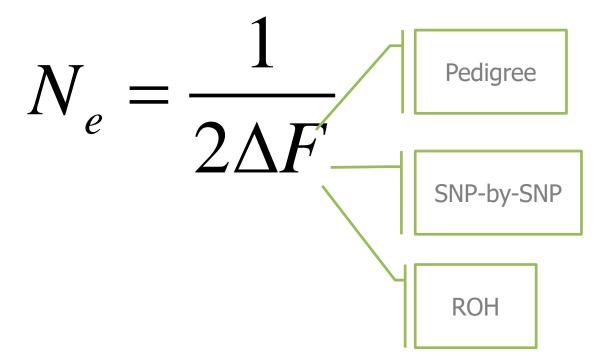
Methods

Pedigree-based inbreeding estimates

Software **PEDIG**

SNP-by-SNP inbreeding estimates

Proportion of homozygous SNP



ROH-based inbreeding estimates

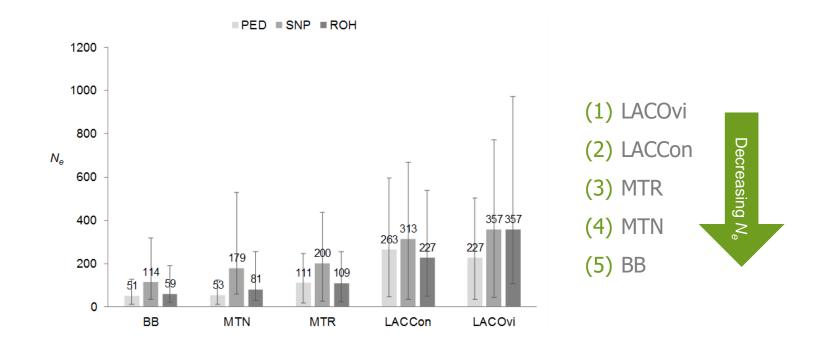
$$F_{ROH_i} = \sum_{k=1}^{n_{ROH_i}} l_{ROH_{ik}} / l_g$$

Results

Rate of inbreeding per generation ± standard error

	$\Delta F_{\scriptscriptstyle PED}$	$\Delta F_{\scriptscriptstyle SNP}$	ΔF_{ROH}
BB	0.0099 ± 0.0017	0.0044 ± 0.0010	0.0085 ± 0.0024
MTN	0.0094 ± 0.0012	0.0028 ± 0.0007	0.0062 ± 0.0017
MTR	0.0045 ± 0.0004	0.0025 ± 0.0002	0.0046 ± 0.0006
LACCon	0.0019 ± 0.0002	0.0016 ± 0.0001	0.0022 ± 0.0003
LACOvi	0.0022 ± 0.0002	0.0014 ± 0.0001	0.0014 ± 0.0003

Results


Rate of inbreeding per generation ± standard error

	$\Delta F_{\scriptscriptstyle PED}$	$\Delta F_{\scriptscriptstyle SNP}$	ΔF_{ROH}
BB	0.0099 ± 0.0017	0.0044 ± 0.0010	0.0085 ± 0.0024
MTN	0.0094 ± 0.0012	0.0028 ± 0.0007	0.0062 ± 0.0017
MTR	0.0045 ± 0.0004	0.0025 ± 0.0002	0.0046 ± 0.0006
LACCon	0.0019 ± 0.0002	0.0016 ± 0.0001	0.0022 ± 0.0003
LACOvi	0.0022 ± 0.0002	0.0014 ± 0.0001	0.0014 ± 0.0003

Results

Effective population size. Bars indicate the 95% confidence interval

- (1) ΔF and N_e are empirically comparable across the three evaluated methods
- (2) N_e of these dairy sheep subpopulations and breeds are in the low hundreds
- (3) Further research on ROH-based inbreeding is still required

Acknowledgements

H2020 project: Smarter

Poctefa (Feder Funds): Ardi

INRA project: GDivSelGen

Thanks for your attention!

