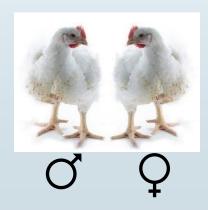
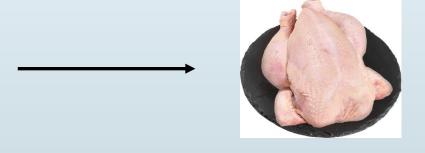
Performance of dual-purpose types, an extensive broiler and a layer type fattened for 67 and 84 days

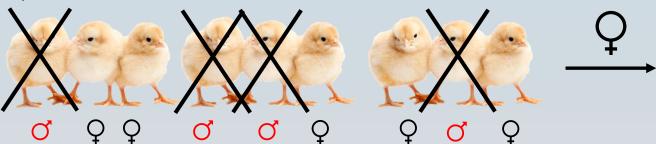
Sabine Mueller,

Ruth E. Messikommer, Michael Kreuzer, Isabelle D.M. Gangnat

ETH Zürich

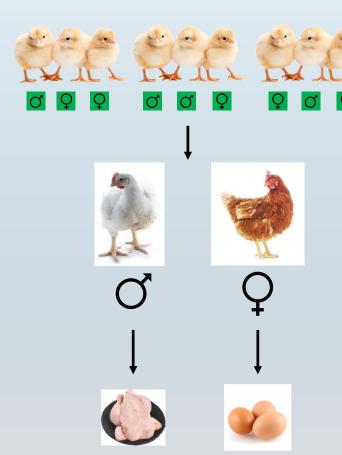





Introduction

Meat production:

Egg production:


EU27: > 300 million

Introduction

Dual-purpose types

Questions

 To which extent can dual-purpose types compete with a slowgrowing broiler in growth and slaughter performance?

How long does the optimal fattening period last?

 How is the performance of male laying cockerels under farm practice conditions?

Types

Hubbard S 757; HU; 3 + 9

Lohmann Dual; LD;

Novogen Dual; ND;

Lohmann Brown; LB;

1350 chickens from each type

• Slaughter: On d 67 (according to the Swiss guidelines for organic production) and d 84 of age

Diets

- Commercial organic starter diet (12.4 MJ/kg metabolisable energy, 230 g crude protein/kg diet)
- Commercial organic fattening diet
 - Main components: Maize, soybean cake, wheat
 - 12.8 MJ/kg metabolisable energy
 - 230 g crude protein/kg diet
- Ad libitum access to feed and water

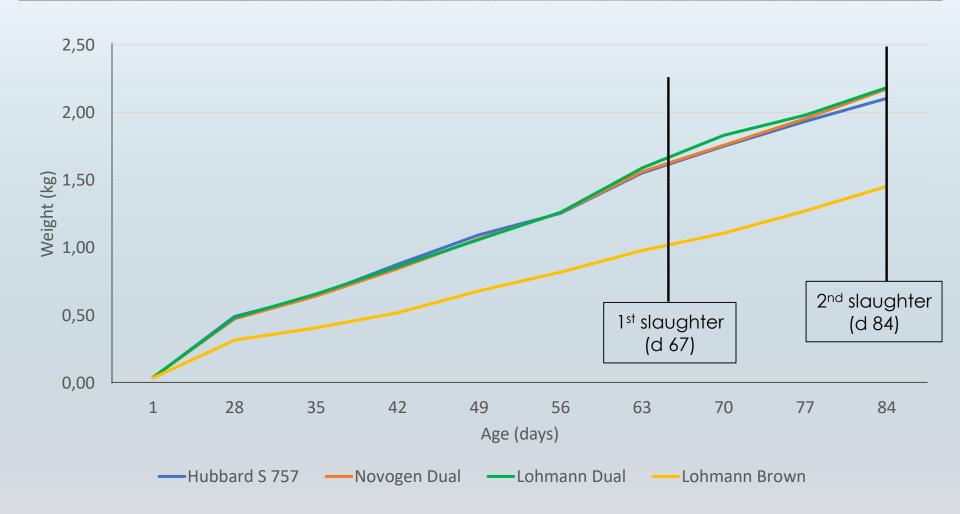
Housing

- Research station Aviforum, Zollikofen, Switzerland
- 20 compartments (20 m²), 5 compartments per type
 - From d 21 on: access to a protected outdoor area
- 270 animals per type and compartment

Parameters

Weekly: Body weight, feed intake

At slaughter: Carcass weight and morphology


breast, legs, wings

- Calculations: Dressing percentage, breast meat, leg & wing proportion of carcass
- Statistics: ANOVA, considering type, age at slaughter and their interaction as fixed effects

Weight development

Growth characteristics

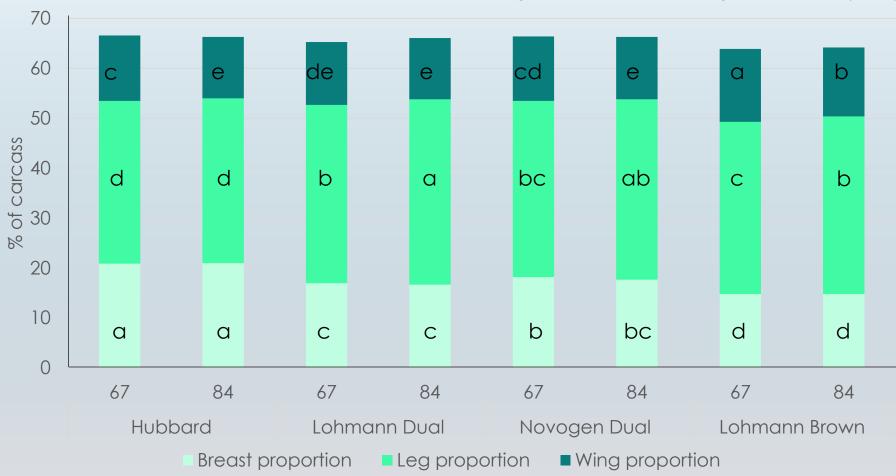
	Hubbard S 757		Lohmann Dual		Novogen Dual		Lohmann Brown	
Days of fattening	67	84	67	84	67	84	67	84
Average daily feed intake (g/bird)	65 ^d	76 ^b	71 ^c	84 ^a	68 ^{cd}	79 ^b	56 ^f	60 ^e
Feed conversion ratio (g feed/g weight gain)	2.6 ^d	2.7 ^{cd}	2.8 ^{bc}	2.9 ^{bc}	2.8 ^{bc}	3.0 ^b	(3.7°	3.6°

α-fMeans within a row carrying no common superscript are significantly different (P<0.05)

Slaughter characteristics

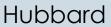
	Hubbard S 757		Lohmann Dual		Novogen Dual		Lohmann Brown	
Days of fattening	67	84	67	84	67	84	67	84
Carcass weight (kg)	1.2 ^b	(1.6°	1.1 ^b	(1.6°	1.1 ^b	(1.5°	0.6 ^d	0.8 ^c
Breast angle (°)	119b	126°	97 ^e	104 ^{cd}	98 ^{de}	105c	78 ^f	84 ^f

^{a-f}Means within a row carrying no common superscript are significantly different (P<0.05)



Carcass composition

^{a-e}Means within a row carrying no common superscript are significantly different (P<0.05)



Conclusion

- Dual-purpose types performed at a same level as the slow-growing broiler type
- Disadvantage of dual-purpose types: Smaller breast meat and breast meat proportion

Lohmann Dual

Novogen Dual

Lohmann Brown

- On d 84 compared to d 67, valuable cuts were heavier but similar in proportion of total carcass.
- The layer cockerels were inferior in all important traits.

Thanks!

- Aviforum
- All the involved people for their help
- Coop Research Program of the ETH Zurich World Food System Center and the ETH Foundation
- Swiss Federal Office of Agriculture

For your attention!

