

EAAP 2018 Dubrovnik, Croatia, 27th to 31st August 2018

Precision feeding of lactating sows: development of a decision support tool to handle variability

R. Gauthier¹, F. Guay², L. Brossard¹, <u>C. Largouët</u>³, <u>J.Y. Dourmad</u>¹

¹ PEGASE, INRA Agrocampus Ouest, 35590 Saint-Gilles, France

² Université Laval, G1V0A6 Québec, Canada

³ IRISA, Agrocampus Ouest, 35000 Rennes, France

Context and objectives

Feeding, a major lever for swine production

- Animal welfare & Behaviour
- Reproduction
- Feeding cost

- Releases of pollutants in soil and water
- Non-renewable resources (phosphate)

Adapt nutrient supply to energy, amino acids and mineral requirements

Evolution of feeding practices

- Individual feeding instead of group feeding
- New feeders offering the possibility of mixing different diets

- Availability of new technologies :
 - Individual identification of animals (RFID tags)
 - New sensors
 - Animal (physical activity, feeding behaviour, weight)
 - Breeding conditions (temperature, dampness ...)

New perspectives to :

- Improve sow feeding and their welfare
- Reduce environmental impacts and feeding costs

Objectives and approach

• Objectives

- Calculate individual requirements for lactating sows
- First step through a new DSS* that could be embedded in automated feeding equipment

Approach

- Based on InraPorc model

 Modelling of the effect of litter size, litter growth and feed intake on individual requirements

Description of the DSS

Description of the Decision Support System

Description of the Decision Support System

Data used for the calculation of sows requirements

		No	Mean	SD	10 th	90 th
					percentile	percentile
	Sow parity	817	1.9	0.8	1.0	3.0
Data base	Sow BW*, kg	817	218	25	186	250
	Sow BF*, mm	817	14.5	4.0	9.2	20.3
	Sow feed intake, kg/d	817	5.8	1.3	4.2	7.6
	Lactation length, d	817	18.6	2.6	15.0	22.0
	Sucking litter size, piglet/d	817	11.9	1.2	10.3	13.3
	Litter weigh gain, kg/d	817	2.6	0.6	1.9	3.3

adapted from Lemay and Guay, 2017

Description of the Decision Support System

Nutritional requirements factorial model

- Energy requirements
- BW and BF gain, and protein mobilization
- SID* amino acid, and mineral requirements
- AA* provided by the regressing uterus
- Sow characteristics at parturition:
 - Parity, BW, BF Thickness
- Daily information:
 - Litter size, feed intake

Tests and validation

Nutritional requirements evolution across the lactating period

A huge variability of nutritional requirements:

- between lactating sows
- accross the lactating period

Individual energy requirements and balance

Individual SID Lysine requirements and balance

SID Lysine requirements per kilogram of diet

Virtual experiments

Standard feeding
Single diet for the whole herd

- Precision feeding
 - A two-diet mix, for each sow, each day

Variability of digestible lysine requirements per kg of diet

Variability of digestible lysine requirements per kg of diet

Conclusion and perspectives

Conclusion and perspectives

- Nutritional requirements are higly variable between lactating sows and accross time
- A two-diet mix applied to each lactating sow, each day may:
 - reduce lysine and protein intake (-6.2%)
 - while limiting excesses (up to 75%) and deficiencies (up to 63%) for digestible lysine
- Milk production and sow's appetite predictive algorithms will now be developped

EAAP 2018 Dubrovnik, Croatia, 27th to 31st August 2018

Thank you for your attention!

