

MoBPS – Modular Breeding Program Simulation

Torsten Pook¹, Martin Schlather², Amudha Ganesan¹, Henner Simianer¹

¹ University of Goettingen, Animal Breeding and Genetics Group, Center for Integrated Breeding Research, Goettingen, Germany

² University of Mannheim, School of Business Informatics and Mathematics, Mannheim, Germany

- How many animals to use?
- Generate genotype/phenotype data of all animals?
- Mating scheme?
- Selection technique?
- And much more ...

Possible ways to answer this?

- Experience of the breeder
- Simulation
- Problems with simulation studies & available tools:
 - Reality is far more complex
 - Too little flexibility to account for specific needs
 - → Infinite number of homemade simulation tools/script

"One ring tool to rule handle them all"

R-package: MoBPS (RekomBre)

- Simulation based on single individuals
- Extremely flexible structure:
 - Whenever someone needed something new we could add it to the tool so far
- Storage technique:
 - General information
 - Allelic variants / Genetic maps
 - Traits and causal loci
 - Data for each individual
 - Points of recombination & founders for each segment
 - Mutations/Duplications
 - On-the-fly computation of genotypes & haplotypes
 - Pedigree

Ways to analyze the obtained data

- Compute the costs and gains of a breeding program
 - Fixed costs
 - Cost of genotyping/phenotyping
 - Gains for each individual based on its trait values
- Genotypic analysis:
 - Perform analysis of a dataset with known underlying true settings
 - Genetic values, IBD, sweeps-detection
- Predefined output functions: Genetic trend, allelic frequencies


```
breeding.diploid <- function(population, mutation, rate=10^-5, remutation, rate=10^-5, CRIFF
    recombination.rate=1, selection.m=c("random"), selection.w=NVLL, CRLF
    new.selection.calculation= TRUE, selection.function.matrix= NULL, CRLF
     .....selection.size=c(0,0), breeding.size=0, breeding.gender=0.5, CRIF
     breeding.gender.random=FALSE, used.generations.m=1, CRIF
     used.generations.w=NULL, relative.selection=FALSE, migration.level.m = 0, CRLF
     migration.level.w=0, add.gen=0, recom.f.indicator=NULL, recom.f.polynom=NULL, CRLF
     duplication.rate=0, duplication.length=0.01, duplication.recombination=1, CRIF
     .....new.migration.level=0L, bve=FALSE, bve.database= NULL, sigma.e = 100, CRIE
    sigma.s = 100, new.bv.observation = NULL, new.bv.child="mean", CRIF
      computation.A="vanRaden", delete.haplotypes=NULL, delete.individuals=NULL, CRLF
     fixed.breeding=NVLL, fixed.breeding.best=NVLL, max.offspring=c(Inf,Inf), CRLE
     store.breeding.totals=FALSE, forecast.sigma.s=TRUE, multiple.bve="add", CRLE
     multiple.bve.weights=c(1), store.bve.data=FALSE, fixed.assignment=FALSE, CRIFF
     reduce.group=NVLL, reduce.group.selection="random", selection.critera=c(TRVE,TRVE), CRLE
    ....same.sex.activ=FALSE, same.sex.gender=0.5, same.sex.selfing=TRUE, CRIF
    selfing.mating=FALSE, selfing.qender=0.5, praeimplantation=NVLL, CRLF
  sigma.e.database=NULL, heritability=NULL, multiple.bve.scale=FALSE, CRIF
```

Only two functions are needed to perform all simulations. You just have to learn 200 input parameters as input options.

```
new.preeqing.coffetation-woll, estimate.add.gen.var-falsh, estimate.pheno.var-falsh, enum
    best1.from.group=NULL, best2.from.group=NULL, store.comp.times=TRUE, CRIE
    store.comp.times.bve=TRUE, store.comp.times.generation=TRUE, CRIF
    special.comb=FALSE, max.auswahl=Inf, predict.effects=FALSE, SNP.density=10, CRLE
     use.effect.markers=FALSE, use.effect.combination=FALSE, import.position.calculation=NULL, CRLE
     special.comb.add=FALSE, BGLR.save="RKHS", BGLR.save.random=FALSE, ogc=FALSE, CRLE
    ....emmreml.bve=FALSE, nr.edits=0, qene.editinq.offspring=FALSE, qene.editinq.best=FALSE, CRLF
     gene.editing.offspring.gender=c(TRUE, TRUE), gene.editing.best.gender=c(TRUE, TRUE), CRLF
      ....qwas.u=FALSE, approx.residuals=TRUE, sequenceZ=FALSE, maxZ=5000, maxZtotal=0, CRLF
     ....qwas.database=NULL, delete.gender=1:2, qwas.group.standard=FALSE, CRLF
    new.bv.observation.gender=c(1,2), y.gwas.used="pheno", gen.architecture.m=0, CRLF
    .... qen.architecture.w=NVLL, add.architecture=NVLL, ncore=1, ncore.qeneration=1, CRLF
    Z.integer=FALSE, store.effect.freg=FALSE, backend="doParallel", randomSeed=NULL, CRLF
    randomSeed.generation=NULL, Rprof=FALSE, miraculix=FALSE, miraculix.mult=NULL, CRIF
    fast.compiler=0, miraculix.cores=1, store.bve.parameter=FALSE, CRIF
print.error.sources=FALSE, miraculix.chol=FALSE, bve.database.insert=1, CRLF
    best.selection.ratio.m=1, best.selection.ratio.w=NULL, best.selection.criteria.m="by", CRIFF
   best.selection.criteria.w=NULL, best.selection.manual.ratio.m=NULL, CRIF
best.selection.manual.ratio.w=NULL, bve.migration=NULL, parallel.generation=FALSEGRLF
```

User interface

- Mainly developed by Amudha Ganesan
- Plan: Host a webserver (website) for anyone to access
- Computations itself have to be performed locally (PC or server)

General Information:								
Breeding Progra	Cattle Program							
Species	Cattle •							
Different length Chromosomes	1	✓ Yes						
Complex polyge	Yes							
Different Numb Chromosomes	er of	29						
Chromosomes	Length	Marker Density						
Chromo1	1.334	2671.2						
Chromo2	1.18	2481.4						
Chromo3	1.164	2404.4						
Chromo4	1.125	243214						
Chromo5	1.158	2411						
Chromo6	1.072	2631.8						
Chromo7	1.071	2331.4						

Trait Name	Mean	Standard Deviation	Heritability	No.of polygenic loci	Major QTL	Value per unit	Trait 1	Trait 2	Trait 3
MKG	9300	900	0.35	1000	1	-	1	0.8	0.7
F%	3.9	0.4	0.4	1000	1	1.5	0.9	1	0.5
P%	3.4	0.3	0.38	1000	0	6	0.8	0.6	1

MKG: SNP	Chromo	Effect 0	Effect 1	Effect 2	Optional info
545	14	0	-400	-800	DGAT 1

F: 9	F: SNP Chromo		Effect 0 Effect 1		Effect 2	Optional info
54	5	14	0	0.5	1	DGAT 1

Scenario-Comparison

• Equal Weights vs. 0.5 Milk Yield, 1 F%, 3 P%

Memory & computational performance

- Most computational relevant parts are written in C/C++
- R-package miraculix developed by Martin Schlather
- Bitwise-storing of founder haplotypes:
 - Each marker needs 2 bits per individual (00, 01, 10, 11)
 - Traditional R: integer (32 bits) & numeric (64 bits)
- Bitwise matrix & vector multiplications (scalar products)
 - Bitwise operations on whole register (128/256 bit)
 - SSE2/AVX2 shuffle
- What it comes down to:
 - Same speed as PLINK with forth of memory usage
 - 10 times faster than regular matrix multiplication in R
 - 15 times less memory than

Summary

- New simulation tool: MoBPS
 - Breeding programs on an individual base
 - Flexibility to incorperate personal needs
 - Computational efficiency to simulate thousands of generations
- Soon openly available
 - R-package at https://github.com/tpook92/
 - Web-based application
- Beta-version on request:
 - Torsten.pook@uni-goettingen.de or talk to me here

Acknowledgements

- My Project: MAZE ("Accessing the genomic and functional diversity of maize to improve quantitative traits")
 - Funding: BMBF (Grant ID 031B0195)
- The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Program under the grant agreement n° 677353 IMAGE
- Research Training Group 1644
 "Scaling Problems in Statistics"
- Animal Breeding and Genetics Group University of Goettingen

Bundesministerium für Bildung und Forschung

Simulation of genetic traits

- For each individual store:
 - True underlying genetic values (not known in practice)
 - Phenotype (add some non-genetic variance)
 - Estimated breeding value (based on GBLUP or similar)
- Effects caused by: Single Marker, Two Markers, Networks, No direct QTL
- For multiple traits:
 - Assign effects to linked markers to obtain correlations
- Without underlying QTL:
 - Trait correlation by usage of formulas according to multidimensional Gaussian distributions:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{22} & \Sigma_{22} \end{pmatrix} \right)$$

Then:

$$X_1|X_2 \sim N (\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

Some simulation we have performed

- Gen editing for quantitative traits
 - 20 generations á 50.000 cows including GBLUP & GWAS/rrBLUP
- Simulation of selection sweeps
 - 5.000 generations under different selection intensities
- Comparison of IBD & BVE methods
- Targeted Mating to use breeding in scenarios with mainly epistatic interactions
- Mating strategies to improve breeding for single QTL traits (blue egg shell)