

OPPORTUNITIES AND CHALLENGES FOR SMALL POPULATIONS OF DAIRY CATTLE

Hossein Jorjani
Interbull Centre
Department of Animal Breeding and Genetics
Swedish University of Agricultural Sciences
Uppsala, Sweden

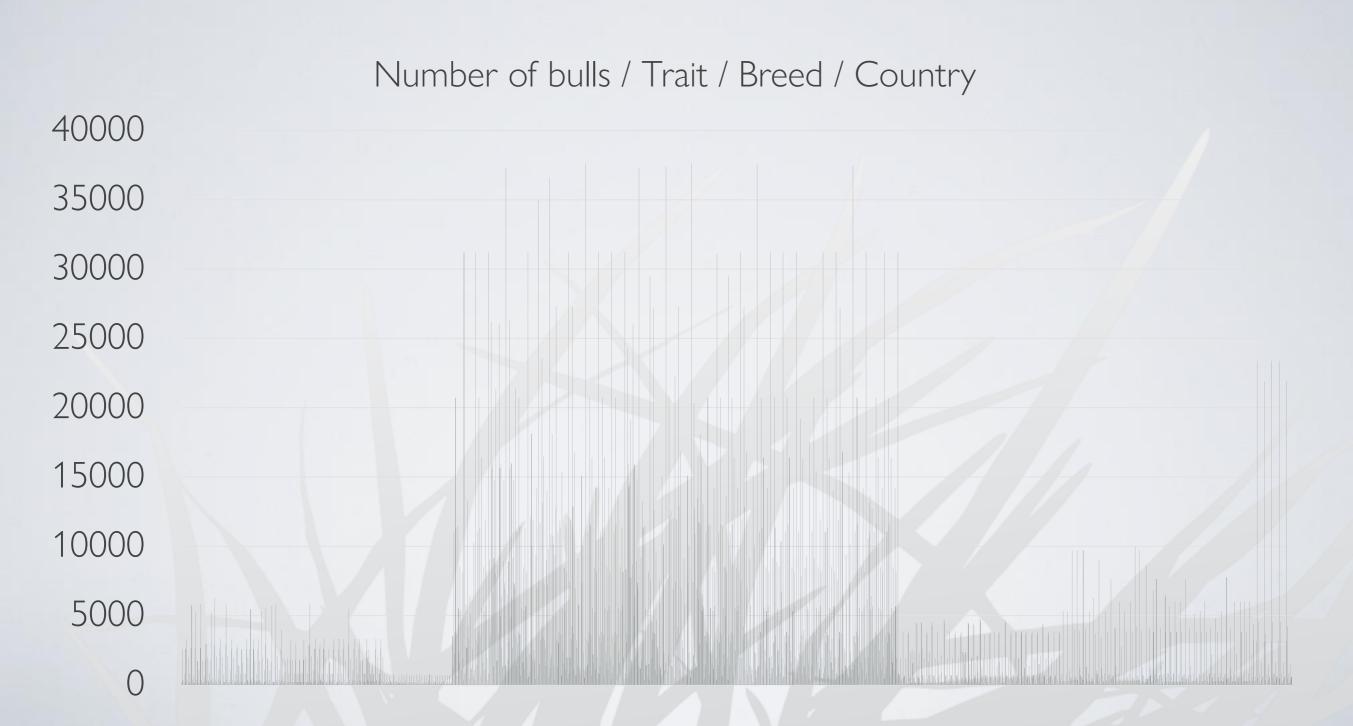
Why was I invited?

To talk about my experiences in working with two groups of "small populations" in two projects:

InterGenomics – BSW

InterGenomics – HOL

Outline


· Some clarifications about "small population"

· Two examples of "small population"

Thinking aloud

Small population?

Country-breed-trait combination

	Size (number of bulls)	Number of populations
All	3657	1929
10 th Percentile	< 93	190
25 th Percentile	< 285	482
10 bulls / birth year	280 (HOL) / 330 (OTH)	523
Arbitrary	< 500	649

Null hypothesis (to be rejected?!)

Consequences of "small population"

- Small population / Smaller farms / smaller industry
- · Weaker economic resources? Weaker infra-structure? Lack of full-time (devoted) staff?
- · Is there a correlation between the number of churches and pubs in towns?
- Smaller population ←
 - Smaller university departments / research institutes ←
 - Smaller government support

Smallest populations

TRAIT	BSW	GUE	HOL	JER	RDC	SIM
		40	1010			
cc2	52	40	1213	MAX→ 133	60	
dlo	48	56	513	122	35	43
pro	51	60	197	86	38	45
SCS	49	57	506	84	37	45
sta	MIN → 19	52	446	36	31	

Smallest populations

BSW	GUE	HOL	JER	RDC	SIM
52	40	1213	MAX → 133	60	
48	56	513	122	35	43
51	60	197	86	38	45
49	57	506	84	37	45
MIN → 19	52	446	36	31	
BSW	GUE	HOL	JER	RDC	SIM
NZL	CAN	ZAF	NLD	IRL	
NZL	NLD	SVN	NLD	CAN (M)	USA
NZL	NZL	MEX	CHE	CAN (M)	USA
NZL	NZL	SVN	CHE	CAN (M)	USA
GBR	AUS	SVN	NLD	CAN (M)	
	52 48 51 49 MIN → 19 BSW NZL NZL NZL NZL	52 40 48 56 51 60 49 57 MIN → 19 52 BSW GUE NZL CAN NZL NLD NZL NLD NZL NZL NZL NZL NZL NZL NZL	52 40 1213 48 56 513 51 60 197 49 57 506 MIN → 19 52 446 BSW GUE HOL NZL CAN ZAF NZL NLD SVN NZL NZL NZL MEX NZL NZL NZL SVN	52 40 1213 MAX→ 133 48 56 513 122 51 60 197 86 49 57 506 84 MIN → 19 52 446 36 BSW GUE HOL JER NZL CAN ZAF NLD NZL NLD SVN NLD NZL NLD SVN NLD NZL NZL NZL MEX CHE NZL NZL SVN CHE	52 40 1213 MAX→ 133 60 48 56 513 122 35 51 60 197 86 38 49 57 506 84 37 MIN → 19 52 446 36 31 BSVV GUE HOL JER RDC NZL CAN ZAF NLD IRL NZL NLD SVN NLD CAN (M) NZL NZL MEX CHE CAN (M) NZL NZL SVN CHE CAN (M)

Preliminary conclusion (1)

 You cannot maintain a Genetic Evaluation System (GES) for a really small breed, unless the marginal cost of maintaining such a GES is very small because it is part of a much larger GES.

- Challenge: Small population
- Opportunity: Attach it to a larger program

Explaining conclusion (1)

This is by no means an unusual phenomena:

- Smaller breeds in each country could be included in a larger breed
 ach of the six ITBC evaluation breeds contain many smaller breeds;
- A small country's data, in its entirety, can be included in another country's GES;
- Part or all of the GES of a country can be outsourced to a different country;

Kill them, kill them all 3

- Why do we keep these small populations?
- Why do they need an independent GES?
- Why not let the dairy cattle become like poultry/pig?

This is not a cranky idea!

· Schaeffer (2006):

 A system of cooperator herds or a consortium of herds should be established by the Al organization with approximately 10 000 cows in total.

 In essence, the dairy industry would become more like the poultry and swine industries.

Poultry and pig?

- There are many reasons that Dairy cattle INDUSTRY will not become like poultry and pig INDUSTRY:
- Long generation interval
- Low natural reproductive rate
- . . .
- Standardized housing, feeding, disease control, management,...,
 not possible as it is in poultry and pig

G x E (estimated Genetic correlations for PRO)

CB > 0	FREQ	MIN	MEAN	MEDIAN	MAX
BSW	45	0.773	0.849	0.859	0.916
GUE	15	0.761	0.833	0.825	0.933
HOL	465	0.750	0.836	0.852	0.929
JER	55	0.752	0.834	0.857	0.923
RDC	91	0.755	0.855	0.874	0.931
SIM	66	0.757	0.860	0.864	0.932
CB > 100	FREQ	MIN	MEAN	MEDIAN	MAX
BSW	14	0.852	0.864	0.856	0.916
GUE					
HOL	343	0.750	0.837	0.852	0.929
JER	19	0.752	0.820	0.852	0.920
RDC	9	0.755	0.819	0.790	0.920
SIM	14	0.851	0.870	0.856	0.932

Preliminary conclusion (2)

• If for nothing else, there is a need for independent GES for the dairy cattle breeds that have adapted to the local environment, which is manifested in GxE, and re-ranking of animals.

- Challenge: There is no escape from GxE interaction
- Opportunity: The world's sum of dairy cattle genetic resources is at your disposal to select from.

Would genomics change anything?

- Can genomics change the population size?
- Can genomics change the GxE interaction?

• Can genomics resolve the shortage of (financial) resources for the small populations?

- Challenge: How should small populations deal with the new costs?
- Opportunity: Stronger cooperation

Two examples

InterGenomics

• BSW: 2009 - ...

• HOL: 2017 - ...

Number of bull genotypes

InterGenomics – BSW ← 8 BSW populations

May 2010: 3392 Bull genotypes

October 2010: 3775 Bull genotypes

November 2011: 6202 Bull genotypes

 Size of the reference population at first general successful validation test (November 2011)

Trait	Countries	Old bulls	Reference	Validation
ANG	3	1844	1394	450
INT	2	2242	1637	605
FTP	4	3215	2288	927
CC2	3	3305	2383	922
MSP	3	4038	2980	1058
FAN, RUH	5	4232	3125	1107
FTL	5	4235	3128	1107
RAN, RLS, STA	5	4236	3129	1107
SCS	5	4537	3319	1218
FAT, MIL, PRO	6	4775	3505	1270
DLO	5	4412	3756	656

IG - BSVV

Number of:	Dec 2014	Dec 2015	Dec 2016	Dec 2017
Countries	8	8	8	8
Country-trait combinations	212	219	277	280
Unique submitted genotypes	16,599	20,561	26,794	32,344
Genotypes entering imputation & genomic evaluation	15,808	19,500	24,352	28,329
Distributed international GEBVs	N.A.	4,202,064	6,770,134	7,932,400

Palucci, Jorjani, Benhajali, Hjerpe, Sendecka, Pedersén, Wasserman, Roozen (2018) Interbull Centre. Interbull Bulletin 52, pp 46

IG-HOL genotypes

• IG-HOL: 1705 and 1805

	1805t			
	FEMALE	MALE	ALL	
HRV	173	0	173	
IRL	9523	3166	12689	
ISR	3974	2194	6168	
KOR	1444	605	2049	
PRT	0	831	831	
SVN	720	383	1103	
URY	2790	363	3153	
ZAF	491	326	817	
IMPUTED	17206	7173	24379	
IMPUTED Ancestors	69	106		

Expected (theoretical) reliability gain

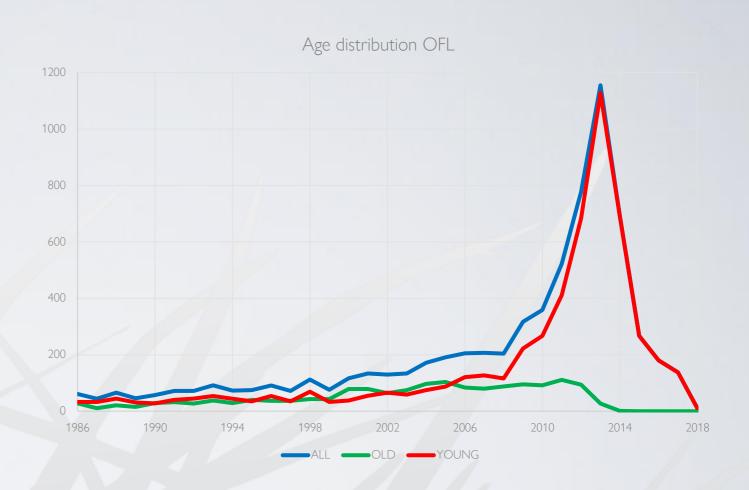
				MACE EBV RELIABILITY		GEBV RELIABILITY		GAIN
				MEAN	STD	MEAN	STD	MEAN
HOL	ofl	IRL	old	61.22	18.38	70.58	11.91	9.36
HOL	ofl	IRL	yng	30.01	5.46	48.79	2.85	18.79
HOL	ofl	SVN	old	65.73	17.51	73.72	11.04	7.99
HOL	ofl	SVN	yng	27.57	5.24	48.54	2.6	20.97
HOL	pro	HRV	old	70.25	10.99	79.24	5.59	9.00
HOL	pro	HRV	yng	30.11	4.08	60.58	1.26	30.47
HOL	pro	IRL	old	60.89	18.68	74.63	10.43	13.73
HOL	pro	IRL	yng	32.78	5.53	59.16	1.92	26.38

Consistency of SNP effects

COUN	ITRY	Previous SN	NP effect	Current S	NP effect	
		MEAN	STD	MEAN	STD	Correlation
HRV	PRO	1.20E-05	8.58E-03	1.29E-05	1.07E-02	0.9943
IRL	PRO	1.87E-05	7.19E-03	1.22E-05	1.08E-02	0.9941
PRT	PRO	1.82E-05	3.84E-03	9.63E-06	1.01E-02	0.9701
SVN	PRO	2.17E-05	5.42E-03	1.69E-05	7.97E-03	0.9865
URY	PRO	1.37E-05	7.37E-03	5.59E-06	9.31E-03	0.9921
ZAF	PRO	5.59E-06	7.53E-03	5.32E-06	9.91E-03	0.9931
IRL	OFL	2.91E-07	9.33E-03	-4.70E-06	1.20E-02	0.9988
PRT	OFL	1.50E-05	8.03E-03	1.35E-05	1.15E-02	0.9979
SVN	OFL	5.29E-06	8.57E-03	2.17E-06	1.14E-02	0.9982

Comparison of GMACE and IG-HOL

	GMACE	IG-HOL
Observations	11548	7173
In common	36	
GEBV (Mean)	16.40	18.38
GEBV (STD)	4.52	5.33
r (GMACE, IG-HOL)	0.88	
REL (Mean)	58.69	54.14
REL (STD)	3.58	1.27
r (GMACE, IG-HOL)	0.59	


INTERBULL INTERBULL

Validation

- Aim of validation
 - To determine the optimum level of polygenic effect
 - To determine the appropriate level of discounting
- Means of validation
 - GEBV-test
- Past experience
 - Two sets of runs: Full data and reduced data
 - In each set: polygenic effects = 0.0, 1.0, 0.1 (11 runs in each set)

Age distribution - PRO

- Bulls born 1986-2009: 2421
- Bulls born 2010-2013: 586
- · There seems to be enough old bulls to perform GEBV-test

- Schaeffer (2006)
- Nicholas & Smith (1983)

$$R = \frac{i \rho \sigma_a}{L}$$

MM, MF, FM, FF

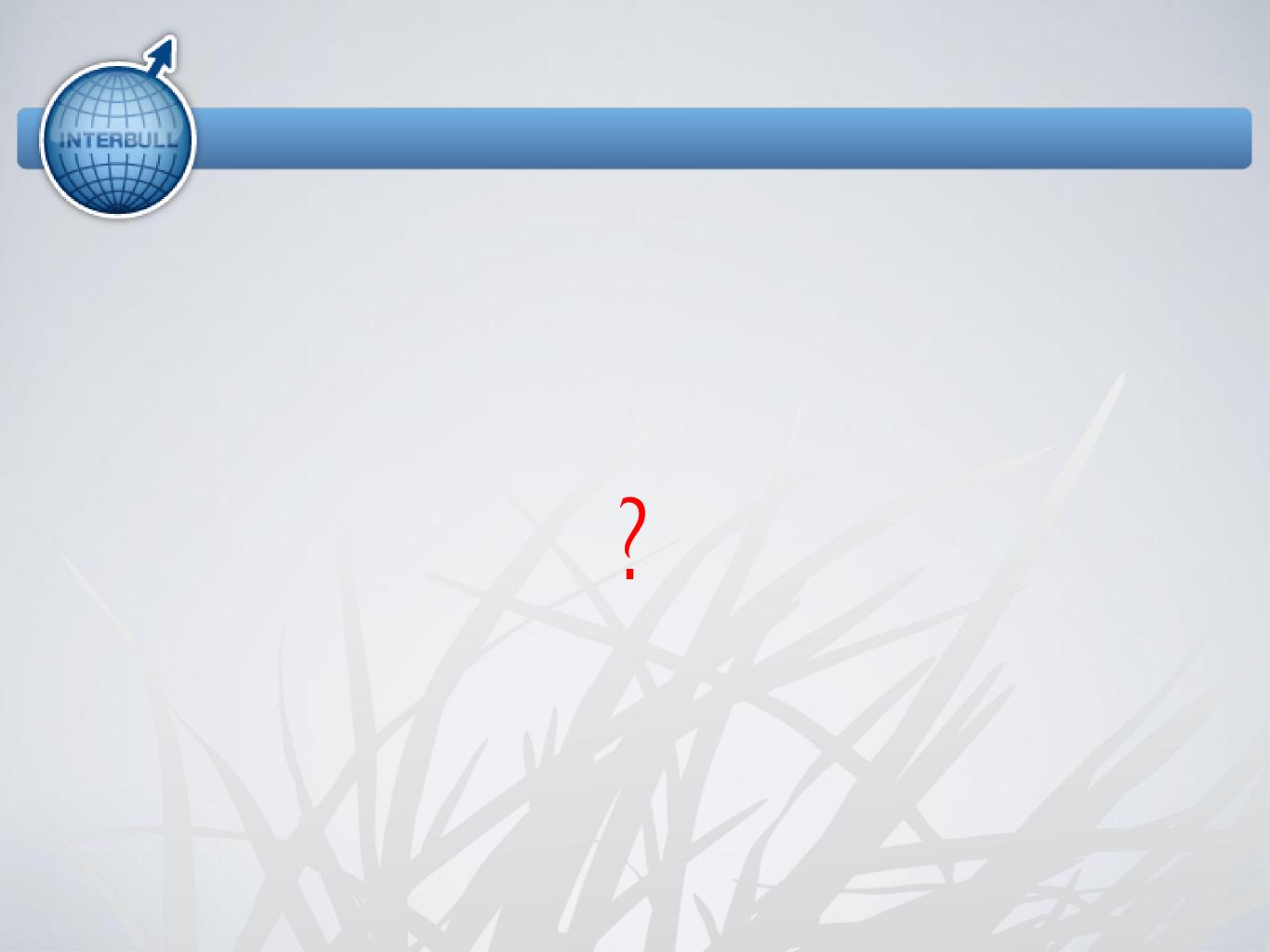
Schaeffer (2006)

		Accı	ıracy	Gene	ration
	Selection %	j	r_{TI}	Interval, L	$I \times r_{TI}$
Sire of bulls	5 5	2.06 2.06	0.99 0.75	6.50 1.75	2.04 1.54
Sire of cow	20 20	1.40 1.40	0.75 0.75	6.00 1.75	1.05 1.05
Dams of bulls	2 2	2.42 2.42	0.60 0.75	5.00 2.00	1.45 1.82
Dams of cows	85 85	0.27 0.27	0.50 0.50	4.25 4.25	0.14
Total				21.75 9.75	4.68 4.55

Nicholas & Smith (1983)

Generation interval

• Juvenile scheme: 22 months = 1.83 years


• Adult scheme: 44 months = 3.67 years

Future is

Schaffer (2006) + Nicholas & Smith (1983)

Female based

Distinction between ...

Evaluation	Estimation	Genetics
Evaluation	Prediction	Genetics
Selection		Macro-economics Micro-economics

Macro-economic decisions made by?
Micro-economic decision made by?