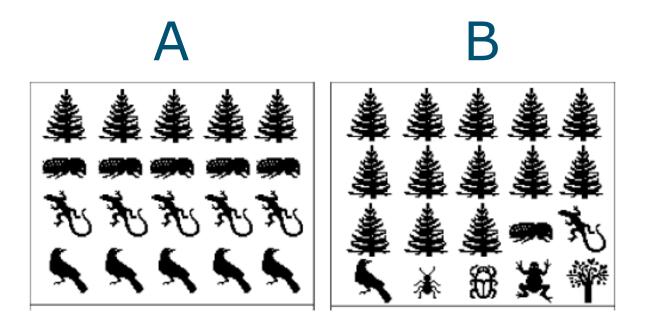
A systematic review of research on biodiversity in European livestock systems

Akke Kok, Imke de Boer, Raimon Ripoll-Bosch

Animal Production Systems group



"Which landscape do you consider to have a higher biodiversity?"

Duelli and Obrist 2003

Biodiversity

"Biodiversity" is a concept rather than a simple variable Pollock et al. 2013

- Biodiversity in EU is declining
- EU biodiversity strategy: halt loss by 2020

Overview EU 2020 Targets and actions

Target 3a – Increase the contribution of agriculture to maintaining and enhancing biodiversity

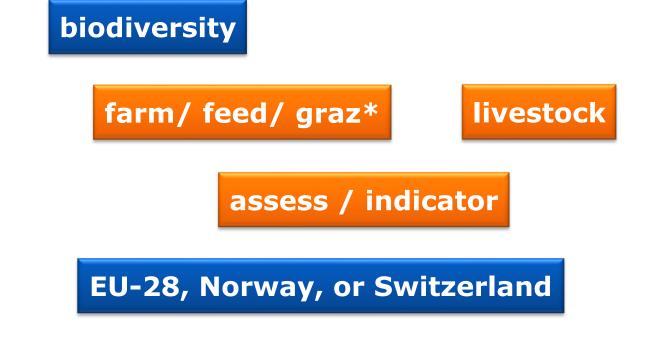
- Abandonment:
 ↓ biodiversity

How does livestock affect biodiversity?

Progress

No significant overall progress

Aim


A systematic review of scientific literature about impacts of livestock on biodiversity in the EU

1) Indicators for biodiversity

2) Effects of livestock

Methods: literature search

Search September 2017 in Scopus, Web of Science

- 857 articles after deduplication
- 131 articles on impacts of livestock on biodiversity

Indicators for biodiversity

Abundance and richness

- Abundance: number of individuals per species
- Richness: number of species

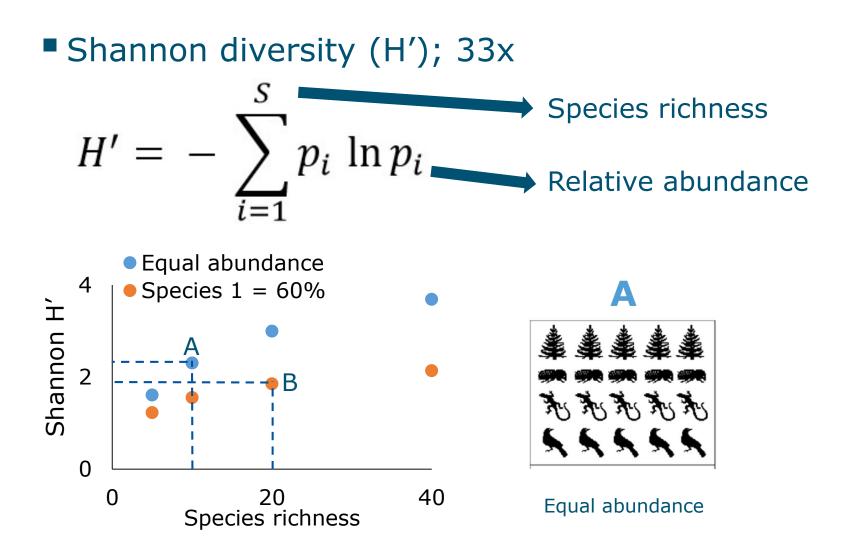
Indicators for biodiversity

- Abundance and richness
- Diversity indices that combine abundance and richness
- Functional diversity & structural heterogeneity
 - Pollinators, herbivores
 - Variation in plant height

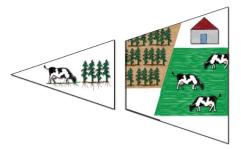
Indicators for biodiversity

- Abundance and richness
- Diversity indices that combine abundance and richness
- Functional diversity & structural heterogeneity
- Rare/ endemic species
- Habitat diversity
- Linear elements
 - Rivers, hedges

Indicators: abundance & richness


Used in 87 articles each (59 reported both)

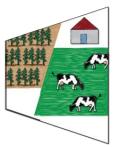
	Abundance	Richness
Plants	53	65
Animals	38	29
Invertebrates	28	23
 Coleoptera 	15	10
 Lepidoptera 	11	12
o Hymenoptera	7	6
o Araneae	7	6
Vertebrates	13	10
o Birds	11	8



Local relevance, feasibility

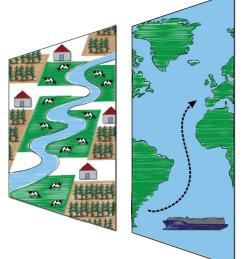
Indicators: a common diversity index

Effects (1)



Focus often on local biodiversity, grazed/ungrazed plot
 Purpose: farming / <u>conservation</u>

Species composition affected by grazed vs ungrazed


- Endemic species by extensive grazing
- Spatial heterogeneity: edges most diverse

Effect (2)

- 8x dairy farm:
 - Scoring system: organic > conventional
 - Impact on species richness in LCA:
 - (off-farm) arable land use
 - Impact per kg milk
 - \rightarrow Smaller land use may compensate larger impact
- 3x pigs/ poultry: NH₃ emissions only
- ≥ region: ecosystem monitoring; trends; EU policy

Conventional

Discussion

- Limited consistency within indicators
 - Context dependent
 - Feasibility

GROUND

BEETLES

- Focus on grazing, dairy and grassbased farms
 - Monogastrics mostly indirect impact
- Context of food production
 - Biodiversity per unit product
 - Arable land

Thank you!

Many indicators for biodiversity that answer different questions

Link to land use is essential

