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→ High-throughput OMICS technologies:

- Phenomics

- Genomics

- Epigenomics

- Transcriptomics

- Proteomics

- Metabolomics

- etc.

Unraveling genetic architecture of complex 
traits using multi-omics approaches
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High-Throughput Phenotyping

• Automated data recording systems

• 24-7 shift

• Robotics and artificial intelligence

• Real time measurements; sensors

- Image

- Motion

- Sound

- Chemical composition

- Spectroscopy

- etc.



Precision Livestock Production



Other farm-
recorded data

App

Sensors
Data storage 

and management

Data editing
Data analysis/mining

Public data

1. Real time monitoring:
Animal-level
Farm (or pen)-level

2. Management optimization:
Product quality, production efficiency, 
animal wellbeing, sustainability, etc.

3. Genetic Improvement:
Novel traits, better scoring, G x E



High-Throughput Phenotyping

• Novel phenotypes

• Indicator traits

• Intermediate traits (DNA → phenotype)

• Scientific Research in Animal Sciences

• Precision Livestock Farm

- Nutrition

- Reproduction

- Health surveillance

- Welfare

- Control of meat and milk composition and quality

Genetic Improvement



High-Throughput Phenotyping

• Benefits and Challenges

• Data management and data processing

• Cost-benefit tradeoff (PLF)

• Can be disruptive; labor force (PLF)



Example 1. Feed Efficiency in 
Group-housed Broilers



Breeder’s Equation

• Expected genetic progress with phenotypic 
selection on a single trait y:
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Indirect Selection

• Selection performed on a specific trait (indicator 
trait) but targeting the genetic improvement of 
another trait (economically important trait)

• It can only be successful if the indicator trait has 
a high genetic correlation with the target trait

• It may be advantageous if:

- It produces greater genetic gain on the target trait

- Indicator trait is less costly to measure

- Selection of sex-limited traits, target trait difficult to 
measure, binary target trait, etc.



Example

• Feed Efficiency, Feed Conversion in Broilers

➢ DMI:ADG assessed in cages, as an indicator of feed 
conversion in commercial conditions (floor, social 
interactions, etc.)



Correlated Response

• The correlated response to selection 
can be predicted by:
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where rx,y is the genetic correlation 
between traits x and y



Correlated Response
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• The correlated response to selection 
can be then expressed as:

• Its effectiveness, relative to direct 
selection, is given by:
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Example

Heritabilities:

Cages h2 ≈ 0.20

Floor h2 ≈ 0.25

→ rx,y ≈ 0.35
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Feed Efficiency in Broilers

• Individual feed intake (DMI)

• Genetic selection for feed efficiency

• RFID on floor raised bird; social interactions

• 3,986 birds (males and females)

• 28 day trials; BW measured at beginning, 
middle and end of trials



Residual Feed Intake - RFI

DMI (g/d) = μ + β1× ADG + β2× Hen Flock + β3× Sex + β4× Trial + RFI
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Inputs

Visits

Eating 
time

Meals

Meal 
duration

Meal 
size

Visit 
duration

Criteria 
applied

Meal 
criteria

RFI

Using Feeding Behavior to Predict RFI 



Density Curves
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D
e

n
s
it
y

-2 -1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

AAI1993

Log (visits interval, min)

Defining Meal Criteria

Interval within meals Interval between meals



Modeling Approaches:

• Logistic Regression

• Support Vector Machine
- Linear SVM

- Quadratic SVM

• Decision Tree
- Boosted Trees

Using Feeding Behavior to Predict RFI 

Model Comparison:

• 5-fold Cross-validation



Using Feeding Behavior to Predict RFI 

Accuracy 
(%)

Modeling Approach

Logistic 
Regression

SVM-
linear

SVM-
quadratic

Boosted 
Trees

Overall 50 60 66 64
High 87 45 65 62
Low 13 76 67 66
AUC 0.51 0.67 0.72 0.67
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• Higher genetic gain for RFI

• Behavior seemingly associated with RFI

• Additional prediction models to be tested
(modeling approaches and predictors)

• Potential for earlier detecting of health problems

• Integration of pedigree and genomic information

Example 1; Conclusions



Example 2. Dairy Cow Feed Intake 
Prediction Using Milk MIR



Milk Mid-infrared Spectra

dry matter intake 
mid-infrared (MIR) 

spectroscopy 

milk sample

Dorea JRR, Rosa GJM, Weld KA and Armentano LE. Mining data from 
milk infrared spectroscopy to improve feed intake predictions in 
lactating dairy cows. J. Dairy Sci. 101: 5878-5889, 2018. 



Experimental Data

• Improve intake predictions

• Hard to measure in practical conditions –
Feed efficiency

- 310 cows from 5 trials

- 1276 observations of DMI, behavior (visit 
duration), milk yield, BW, milk spectra

- Milk spectra: 1060 wavelengths
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Milk Mid-infrared Spectra

- Milk spectra: 1060 wavelengths

- CV > 5%: 362 wavelengths



Markov Blanket

• Dimension reduction techniques

• Bayesian Network; Markov Blanket (MB):

- MB of a variable X is the smallest set 
MB(X) containing all variables carrying 
information about X that cannot be 
obtained from any other variable

- In a DAG, this is the set of all 
parents, children, and spouses of X.

- Milk spectra MB: 33 wavelengths



Data Analysis; Models

• Approaches: Partial Least Squares (PLS) and 
Artificial Neural Network (ANN)

1) Milk yield, BW0.75, DIM

2) Milk yield, BW0.75, DIM, and 362 WL

3) Milk yield, BW0.75, DIM, and 33 WL (MB)

4) Milk yield, BW0.75, DIM, Fat, Protein + Lactose

5) Milk yield, BW0.75, DIM, 33 WL, Visit duration

6) Milk, DIM, and 33 WL (MB)

7) 362 WL (WL)

8) 33 WL (MB)



Data Analysis; Model Validation

• Validation: Independent datasets

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Trial 1 Trial 2 Trial 3 Trial 5Trial 4

5 times

…



Results

• Milk components vs raw spectra: better performance with ANN



Results

• Variable selection through MB improved model performance, 
decreasing RMSEP



Results

• Model including MY + DIM + BW + Milk spectra (33 WL; BN) + 
Behavior (VD) presented accurate and precise predictions



Example 2; Conclusions

• ANN on reduced WL set (with BN) improved 
prediction quality

• Superiority of ANN indicates potential nonlinear 
relationships between DMI and WL

• Superiority of models including raw spectra 
compared with milk components (fat, protein, and 
lactose) indicates that other unknown compounds 
may be important

• Validation of model predictions should be carefully 
conducted



Example 3. Pig Growth and Development



Computer Vision in Livestock 

- Body condition score
- Body weight
- Carcass yield
- Feed bunk score
- Others



• Data 700 pigs

• Weight across different ages

• Leg and back scores

Prediction of Pig Weight



• Periodic measurements:

– Direct assessment of animals growth
• Assess intra-group variability

• Management improvement

– Prohibitive
• Labor and cost

• Animal welfare (stress)

Real-Time Monitoring: Growth



• Recordings of groups of pigs were made on 
the test date (nursery and off test)

• Sensor positioned on top of the area 
before to the scale

• Pigs were contained under the sensor for a 
variable amount time

• Males and females

Data Acquisition



Segmentation Algorithm



• Feature extraction:

– Body Measurements:
Area 
Volume
Length
Width
Height

– Shape Descriptors:
Eccentricity
Back curvature linear coefficient
Polar Fourier Descriptors

Features Extracted



• Variables from a random image

• Image with max area

• Image with max length

• Image with max volume

• Average across all images

• Median across all images

• Truncated average removing 20% of data for each animal

• Truncated average of the subset on 3rd quantile

Image Selection



Linear model:

– For all the reduced datasets 10 permutations 
on a 5-fold cross-validation were used to 
access the quality of the predictions

– Stepwise regression with AIC as model 
selection criterion was applied 

Statistical Analyses



Histogram of live body weight (kg) distribution for nursery 
and off-test pigs with relative means and variation

N

Results



• Analysis including nursery data

A) Box plots for Mean absolute error (MAE) as percentage of the 
average body weight. B) Coefficient of determination (R2) of the 

different models on the test data across the cross validation. 

Results



• Analysis without nursery data

Results

A) Box plots for Mean absolute error (MAE) as percentage of the 
average body weight. B) Coefficient of determination (R2) of the 

different models on the test data across the cross validation. 



Example 3; Conclusions

• Fully automated system for online extraction of 
body measurements with 3D camera 

• Goal: implementation of a CVS for the acquisition 
of biometric traits and body weight on 
commercial farms

• Lower MAE with the truncated average and 
truncated median on the 3rd quartile

• Incorporation of sex and line in the models did 
not improve predictions



Concluding Remarks

➢ Technologies always improving; lower cost

➢ Data storage and data management

➢ Machine learning and artificial intelligence 
techniques

➢ Cost-benefit for breeding programs and 
for commercial applications
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